

ADevelop Sustainable Aspects

...to reduce environmental, social and economic impacts...

Coordination of stakeholder needs across an array of design criteria:

- · Social aspects of welfare, health, safety and comfort;
- Functional and economic aspects of use incorporating flexibility;
- Technical aspects of serviceability, durability, reliability; and.
- Ecological aspects of resource depletion and pollution abatement.

Criteria	Flow	Planning	Design	Procure	Construct	Operate	Disposition
Conserve	Energy	renewable	daylight	daylight	thermal comfort	efficiently	recover
Jources	Water	catchment	efficiency	catchment	avoid run-off	reuse	check quality
	Materia	/ reuse	interoperable	interoperable	disassembly	reparability	recover
	Commu	<i>inity</i> amenity	equity	equity	OH&S	WH&S	heritage
Protect	Energy	low toxicity	fresh air	fresh air	noise/dust EMP	control, EMS	control, EMS
SIIKS	Water	Interactive	low impact	low impact	nature corridor	educative	habitat refug
	Materia	/ safety	disassembly	local	WH&S	WH&S	heritage
	Commu	nity amenity	equity	local	OH&S	WH&S	heritage

	BSA Fra	amewor	k Assistar	nce
	Propose	Estimate	Score	
	Invest	Design	Label	
	Plan	Model	Procure	
	Class	Monitor	Track	
	Present	Calculate	Supply	
	Rate	Blueprint	Control	
	Guide	Report	Check	
	Benchmark	Regulate	Fitout	
	Tender	Specify	Certify	
	Bid	Checklist	Accept	
	Manual	Bill	Reference	
286: Construction Tensoration				

CADevelop BEA Tools Studied

- 1. Findings of Seo (2002), RMIT et al (2002) and Watson et al (2003);
- 2. User applications over the full life cycle from cradle to cradle;
- 3. Evaluation of deliverables by temporal and physical life cycles;
- 4. Stakeholder applications against potential tool deliverables;
- 5. Gaps between user needs and tool attributes/applications; and,
- 6. Prospective plug-in tools needed for their work to fill such

9' XC n 🕑 antic 📑 Home 🔛 💷 UNII 👬 🔤

Attribute	Requirement
Coverage	Address whole of life issues
	Cradle to cradle (operational energy)
	Comprehensive interior occupancy focus
LCA Database	Broad industry acceptance
	Manufacturer product assessment
	Real-time selection (real time)
Weighting	'Ecopoints' / rating to define impact
Framework	Design performance simulation ability
	Concept design modelling
	Hierarchical building element structure
Software	Generic shape / building type choice
	Best practice defaults
	Hierarchical building element structure

CADevelop Interactive Tool Prototypes

Proposed features:

- Communication and alignment with ESD principals, policy and planning;
- Technical and linguistic coordination with other BEA tools
- Comparative assessment against best building performance benchmarks;
- Documentation/templates for briefs specification, contract and evaluation;
- Interactivity with supporting frameworks, guidelines and checklists and
- Plug in tools to meet user needs for in-use assessment on ESD criteria

ICT in Team Project Work for LCADesign

