

RMIT

NIVERSITY

Advantages of Using FRP

- · Immunity in corrosion
- · Low weight

- Resulting in easier application in confined spaces
- Elimination of the need for scaffolding and reduction in labour costs or stopping the traffic and bridge operation
 Very high tensile strength (both static and long term, for
- certain types of FRP material)
- Large deformation capacity
- Unlimited availability in FRP sizes, geometry and dimensions

Design example for hexatal strengthening

RMIT

NIVERSITY

Summary	of strengthening	g technique	niques ^s
Strengthening Method	Design Action	Type of FRP	Special Considerations
Wet lay up of FRP sheets to the tension zone of the soffit of a beam or slab	Flexural strengthening	Sheets or strips	Debonding
Attaching prefabricated FRP sheets to the tension zone of the soffit of a beam or slab	Flexural strengthening	Sheets or strips	Debonding
Attaching prestressed FRP strips to the tension zone of the soffit of a beam or slab	Flexural strengthening	Strips	Anchorage
Fusion-bonded pin-loaded straps	Flexural and shear strengthening	Pin-loaded Straps	Equipment availability
In-situ fast curing using heating device	Flexural strengthening	Strips	-
Bonding FRP strips inside concrete slits	Flexural strengthening	Strips	-
FRP impregnation by vacuum to the tension zone of the soffit of a beam or slab	Flexural Strengthening	Strips	Equipment availability
	•		● RMI1

Summary of strengthening techniques				
Strengthening Method	Design Action	Type of FRP	Special Consideration	
The different types of wrapping schemes to increase the shear strength of a beam or column	Shear strengthening	Sheets	Direction of fiber	
Automated winding of wet fibers under a slight angle around columns or other structures.	Shear and axial compression strengthening	Sheets	Equipment availability	
Prefabricated U or L shape strips for shear strengthening	Shear strengthening	Strips	Direction of fiber	
Prefabricated FRP shells or jackets for the confinement of circular or rectangular columns	Axial compression strengthening and ductility enhancement	Sheets	-	
FRP wrapping for axial compression strengthening and ductility enhancement	Axial compression strengthening and ductility enhancement	Sheets	-	
FRP wrapping for torsional strengthening	Torsional strengthening	Sheets	Direction of fibers	

User Friendly guide – Why?

- · No local guidelines on design with FRP
- USA or Euro draft guidelines need to be adopted in conjunction with the Austroads Bridge design code and AS3600
- Asset owners do not like to rely on manufacturer's recommendations
- The research needs were clearly identified by the industry partners
- Manufacturers were consulted for information on their specific product

RMIT

RMIT

NIVERSIT

Content Summary

- General
- Materials
- · Recommended construction requirements
- General design considerations
- Flexural strengthening
- Shear strengthening
- · Axial compression and ductility enhancements
- · Design examples

General

- Scope and limitation
- Background

- Structural assessment
- Applications and use
- · Commercially available FRP systems

RMIT

Shear and Torsion Strengthening General design considerations Wrapping scheme Shear strength

Nominal Strength

• Strengthening in torsion

Axial Compression and Ductility Enhancement

- Nominal axial strength
- Serviceability considerations
- Tensile strengthening
- Ductility

RMIT

