ABSTRACT

The design optimization process involves a number of tasks that are both knowledge-intensive and error-prone. Most optimization tools focus on gathering a range of mathematical programming algorithms and providing the means for the user to solve design problems. Designers heavily rely on their experience to obtain optimal design solutions. This manual process can be arduous and inefficient. To improve the efficacy of the design optimization process, knowledge-based design optimization systems have been applied to provide knowledge support for tasks which require human expertise. These knowledge-intensive programs are hard-coded computer instructions that are not able to adapt to a dynamic design process. This paper describes learning mechanisms that allow design optimization tools to learn from their use – commencing as “loosely-wired” systems and “hard-wiring” themselves as they are used. A prototyped adaptive design optimization tool and its potential impacts are briefly described.

Keywords: Design optimization tool, knowledge, design process, situated agent, concept formation
1.0 INTRODUCTION

The development of CAD (Computer-Aided Design) tools to support designing can be traced back to 1950s when the APT (Automatically Programmed Tool) was first launched at MIT. Computer-aided design tools, which emerged to assist designers in preparing drawings, specifications, and other design-related elements, now extend their dimensions to accommodate a vast variety of functionalities. Recently mathematical programming and optimization theory began to have a major impact on design. An optimal design can be obtained by solving an optimization problem. The design optimization process involves a number of tasks that are both knowledge-intensive and error-prone. Most optimization tools focus on gathering a range of mathematical programming algorithms and providing the means for the user to solve design problems. These design tools have invariably been built based on a paradigm that is founded on the notion that the tool is unchanged by its use (Gero, 2003). The knowledge and functions are encoded in what we call a “hard-wired” manner during the development stage. Designers rely heavily on their experience to obtain optimal design solutions. This manual process may result in sub-optimal design solution and hence inefficient design.

To improve the efficacy of a design optimization process, knowledge-based design optimization systems have been applied to provide knowledge support for tasks which require human expertise. These knowledge-intensive programs are hard-coded computer instructions that are not able to adapt to a dynamic design process. Motivated by a desire to build knowledgeable and personalized tools, a new research stream has emerged in the field of user modeling and interface agents. This includes work on the Lumiere project at Microsoft Research Centre (Horvitz et al., 1998), PBE systems (Lieberman, 2001) and interface agents (Maes, 1994) at MIT. Although these new tools take more proactive roles in assisting the user in some application domains, such systems are unable to adequately deal with dynamic situations that occur in designing.

Design is a situated process in which designers interact with their design environments in developing the design (Gero, 1998). Interaction plays a critical role in shaping our design optimization practice in which similar design optimization problems may be solved in different ways. In order to assist designing in this dynamic process, it is necessary to address the interactions between the tool, the problem it is being used on and the use, in the sense that the tool is able to learn and adapt based on its experience to facilitate interactions. This paper describes learning mechanisms that allow design optimization tools to learn from their use – commencing as “loosely-wired” systems and “hard-wiring” themselves as they are used. A prototyped adaptive design optimization tool and its potential impacts are briefly presented.

2.0 SITUATED LEARNING PARADIGM

Our approach is to utilise a situated agent to extend an existing design tool to model interactions, from which the agent is able to learn from its “experience”. Via the agency provided, the tool is able to embody learning and to develop adaptive behaviour to assist designing. The paradigm on which the system depends to build new concepts from its interactions with its environment is founded on the ideas of “situatedness”.

The concept of “situatedness” is the notion that a person’s context consists of conceptual situations that are based on observers’ experience and inseparable from interactions (Dewey, 1902). Situatedness is also referred as “where you are when you do what you do matters” (Gero, 1998). It states that an agent’s knowledge depends on the context in which it is situated. Situatedness is inseparable from interactions in which knowledge is dynamically constructed as we conceive of what is happening to us, talk and move (Clancey, 1995). From this situated perspective, concept learning can be regarded as the way an agent orders its experience in time, which is proposed by Clancey (1999) as conceptual coordination. Conceptual coordination is the process where our everyday
Towards a "loosely-wired" design optimization tool
Wei Peng

experience is ordered by an ongoing understanding of what we are doing, where we are and what role we are playing in a larger social enterprise (Clancey, 1999), Figure 1.

Figure 1. Conceptual coordination (after Fig.1.6. of Clancey (1999))

A concept, which is a higher order categorization of a sequence, is generally formed by holding active a categorization that previously occurred (C1) and relating it to a currently active categorization C2, Figure 1. A concept is a function of previously organized perceptual categories and what subsequently occurs. Figure 2 illustrates a scenario of such a situated concept learning process in which sensory data is augmented into a Gestalt whole. Perceptual category C1 groups sensory sequence “S1→S2” and activates the agent experience to obtain similar organizations. E1, as the agent’s experiential response, represents the agent’s hypotheses about what would happen in the environment at a later time. The agent constructs E1 with environmental changes (S3) into current perceptual category C2. This construction involves a validation process in which environmental changes are matched with the agent’s hypothesis. “Valid” means that the environmental changes are consistent with the agent’s projection of such changes from a previous time frame. The grounding process then reinforces a valid experience. For invalid expectations, the agent updates its perceptual category (C2) with the latest environmental changes. This incremental reflective process allows an agent to construct new concepts based on its previously conceptual coordination held in the experience.

Figure 2. Situated concept learning processes

3.0 A SITUATED AGENT-BASED DESIGN OPTIMIZATION TOOL
Towards a "loosely-wired" design optimization tool
Wei Peng

How can a design optimization tool be developed as a situated agent? A wrapper entails a set of constructs that enable a tool to act as a computational rational agent, exhibiting autonomy independently of the functionalities it embodies (Gero, 2003). From sensor units that are embedded in the wrapper, the agent is able to gather a user’s actions which are part of a design optimization process. These actions include key strokes of objective functions, the users’ selections of design optimization algorithms, as well as gradients of objective functions, etc. These low-level sensory data are used by the situated agent to form concepts.

3.1 THE ARCHIETECTURE OF A SITUATED AGENT-BASED DESIGN OPTIMIZATION TOOL

Figure 3 shows the general architecture of a situated agent-based design optimization tool. The use accesses the design tool (Matlab Optimization Toolbox) via a wrapper, where a situated agent senses the events performed by that user. The situated agent uses its experience and concept formation engine to generate a concept, which changes the tool’s behaviour. As a consequence, users can combine their expertise with the learning results from the agent to develop design solutions. The user can also directly communicate with the agent to obtain additional information. Interface agents, which consist here of Callback agent and M-scripting agent, enable both users and the situated agent to operate on optimization algorithms in the Matlab Optimization Toolbox. Such a framework provides the means that allows the agent to incrementally learn new design experiences.

![Figure 3. A situated agent-based design optimization tool that uses Matlab as the optimization tool](image)

3.2 THE SITUATED AGENT’S EXPERIENCE

The agent’s experience is structured as two parts, those of organized conceptual instances and those of unstructured perceptual instances. Perceptual instance (P-Ins) refers to the experience that partially describes the instance of a design optimization problem. Conceptual instance (C-Ins) contains all necessary information of how a design optimization problem is solved. It is composed of a number of perceptual instances. The conceptual instances are organized as a Constructive Interactive Activation and Competition (CIAC)
Towards a "loosely-wired" design optimization tool
Wei Peng

neural network, in which we extend a basic IAC network (McClelland, 1981; 1995) to accommodate the concept learning process. An IAC has the ability to generalize across exemplars and to provide plausible default values for unknown variables. Knowledge is extracted from the network by activating one or more of the nodes and then allowing the network to reach equilibrium (Medler, 1998). This organized experience changes in terms of weight adaptation and constructive learning as a result of interactions. Weight adaptation adjusts the weights of each excitatory connection so that those nodes that fired together become more strongly connected. Constructive learning incorporates new conceptual instances or reconfigures existing conceptual instances.

4.0 THE PROTOTYPE SYSTEM

The implemented prototype system is illustrated in Figure 4. The tool wrapper interface allows designers to define problems. Embedded sensors gather sensory data and activate preceptor to create percepts, which in turn cues the CIAC network.

Figure 4. The prototype system showing agent performance data in the windows and experiences A and B, where B is the grounded experience A

Based on the activations of and responses from a CIAC neural net, the agent constructs initial concepts and displays the cued knowledge in the tool wrapper. Experiential grounding is the process that verifies the usefulness of a related experience in current situation (Liew, 2004). The grounding process initiates a validation function which matches the initial constructed concepts with environmental changes. Weight adaptation that increases connection weights of the valid concept, grounds experience A to experience B. Response diagrams show the agent’s response value, sum of the activation gains from two consecutive cycles of the CIAC network during activation and competition processes. Activation diagrams output the neurons winning at the equilibrium state, which represent the knowledge learned.

Another scenario that we show in Figure 5 is the constructive learning feature of the agent’s experience. Figure 5 shows the changes of the agent’s experience with a perceptual

instance at runtime being developed as a new conceptual instance. This constructive learning process does not simply record the environmental changes. It re-organizes its experience in time. From such an incremental learning process, the newly constructed conceptual instance develops as the agent’s grounded knowledge.

![Diagram of Experience before and after grounding](image)

Figure 5. Grounding via constructive learning

5.0 CONCLUSION

In summary, this paper introduced learning approaches that allow a design optimization tool to construct new concepts from interactions. The agent develops its structure and behaviour specific to what it is confronted with. A situated agent thus plays a potential role in supporting interactions in the design optimization process. Future research will focus on exploring various learners that can be used to generalize the learned conceptual instances.

ACKNOWLEDGEMENT

This work is supported by a Cooperative Research Centre for Construction Innovation (CRC-CI) Scholarship and a University of Sydney Sesqui R and D grant. The research is carried out at Key Centre of Design Computing and Cognition, University of Sydney, Australia.

REFERENCES

Gero, JS (2003) Design tools as situated agents that adapt to their use, in W Dokonal and U Hirschberg (eds), *eCAADe21*, eCAADe, Graz University of Technology, pp. 177-180.

