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PREFACE 
 
This report presents a method for assessing variation in cost estimates for road 
maintenance and rehabilitation. The report is part of a CRC CI research project 2003-
029-C “Maintenance Cost Prediction for Roads”. The aim of this research project is to 
estimate variation in life-cycle costing for road maintenance and rehabilitation by 
taking into account the variability of road asset conditions.  
 
The authors wish to acknowledge the Cooperative Research Centre for Construction 
Innovation (CRC CI) for their financial support. The authors also wish to thank Mr. 
John Spathonis of Queensland Department of Main Roads, and Mr. Dale Gilbert of 
Queensland Department of Public Works for their constant support and feedback.  
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EXECUTIVE SUMMARY 
 
In the previous research CRC CI 2001-010-C “Investment Decision Framework for 
Infrastructure Asset Management”, a method for assessing variation in cost estimates 
for road maintenance and rehabilitation was developed. The variability of pavement 
strength collected from a 92km national highway was used in the analysis to 
demonstrate the concept.  
 
Further analysis was conducted to identify critical input parameters that significantly 
affect the prediction of road deterioration. In addition to pavement strength, rut depth, 
annual traffic loading and initial roughness were found to be critical input parameters 
for road deterioration. This report presents a method developed to incorporate other 
critical parameters in the analysis, such as unit costs, which are suspected to 
contribute to a certain degree to cost estimate variation. Thus, the variability of unit 
costs will be incorporated in this analysis. 
 
Bruce Highway located in the tropical east coast of Queensland has been identified 
to be the network for the analysis. This report presents a step by step methodology 
for assessing variation in road maintenance and rehabilitation cost estimates. 
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1. Introduction 
 
Realistic estimates of short- and long-term costs for maintenance and rehabilitation 
of road asset management should take into account the stochastic characteristics of 
asset conditions of road networks. The probability theory has been widely used in 
assessing life-cycle costs for bridge infrastructures by many researchers such as 
Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu 
and Frangopol (2004), Noortwijk and Frangopol (2004), and Novick (1993). Very few 
studies were reported for road networks (Salem et. al. 2003, Zhao et. al. 2003).  In 
the existing studies, researchers usually made assumptions about the variability and 
probability distributions of input variables and maintenance/rehabilitation costs in 
estimating life-cycle costs. Quantification of errors in cost estimates due to the 
variability of input variables has not yet been reported in the literature. Frangopol et. 
al. 2001 suggested that additional research was required to develop better life-cycle 
models and tools to quantify risks, and benefits associated with infrastructures. By 
taking into account the variability of the stochastic characteristics of road asset 
conditions, variation in the cost estimates can be investigated. Decision-makers can 
make informed decisions in estimating costs. The output statistical information of the 
cost estimates produced useful information for further analysis in selecting cost 
estimates with a reasonable degree of reliability (e.g. 90th or 95th percentile).  
 
It is evident from the review of the literature that there is very limited information on 
the methodology that uses the stochastic characteristics of asset condition data for 
assessing budgets/costs for road maintenance and rehabilitation (Piyatrapoomi and 
Kumar, Sept. 2004). This report presents a methodology for assessing variation in 
cost estimates for life-cycle cost analysis. This report builds upon the knowledge 
developed in the CRC CI research project no. CRC CI 2001-010-C and literature 
review presented in the CRC CI Report no. 2003-029-C/001. 
 
2. Proposed Methodology for Assessing Variation in Life-

Cycle Costs for Road Maintenance and Rehabilitation 
 
The aim of the proposed method is to incorporate the variability of road asset 
conditions and other critical input parameters along the road network into the 
assessment of life-cycle cost estimates. 
 
The first step in this method is to define a performance function that transforms input 
variables into maintenance and rehabilitation budgets. The second step is to define 
the input variables. A performance function for budget estimates for road 
maintenance and rehabilitation may be written as: 
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Where G is the total budget expressed in terms of probability distribution. m is the 
number of critical input variables, the variability of which is considered in the analysis. 
n is number of road sections (1,2,3,…,n). Y1,n,t, Y2,n,t, ,…,Ym,n,t are random variables of 
input variables with known probabilities of section n in year t. Z1, Z2,…,Zn are random 
transform functions representing model errors in prediction. n is the number of road 
sections used in the analysis. t is the total year used for the life-cycle budget 
estimates. r is the discount rate. 
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The calculation of Equation 1 is the subject of determining the relationship between 
input statistics and output statistics (i.e. how the variability of input variables affects 
the variability of output variables). The calculation of the probability of Equation 1 
becomes difficult since the transform function is complicated. It involves using current 
road asset conditions, current and forecasting road usage values and deterioration 
prediction models to predict road deterioration conditions; selecting maintenance and 
rehabilitation standards; and optimising different budget scenarios to obtain optimal 
budget estimates. Equation 1 can become highly non linear.  
 
To this end, a simulation method is desirable for the statistical assessment of the 
input and output relationship. A simplified sampling technique such as the Monte 
Carlo Simulation technique (Gary an Travers, 1987) may require a larger number of 
data to be sampled to represent an overall variability of an input variable. The Latin 
hypercube sampling technique, as extensively studied by Iman and Conover (1980), 
provides a satisfactory method for selecting small samples of input variables so that 
good estimates of the means, standard deviations and probability distribution 
functions of the output variables can be obtained. 
 
 
3. Framework for Assessing Variation in Cost Estimates 
 
Figure 1 shows the schematic chart of the framework assessing variation in cost 
estimates for life-cycle road maintenance and rehabilitation.  
 

1. The first task is to identify critical input parameters that significantly affect 
road deterioration condition and hence budget estimates.  

2. Establish probability distributions and statistical information (means, standard 
deviation and etc.) of the stochastic characteristics of the critical input 
variables of the road network.  

3. Use Latin-Hypercube Sampling Technique to sample data from the probability 
distributions of the identified critical input parameters. 

4. Use a calculation tool to estimate costs (HDM-4 is used in this study). 
5. Input sampled data of the critical input parameters in HDM-4 for statistical 

analysis 
6. Conduct a series of HDM-4 analyses to obtain the statistics of the output life-

cycle costs. 
7. Quantify the statistical information (e.g. probability distribution, mean, 

standard deviation, etc) of the output life-cycle costs. 
8. Investigate the degrees of variation for the established probability distributions 

of the outcome life-cycle costs. 
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Figure 1 Flow chart for assessing variation in life-cycle costs  (Flow chart continued) 
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Figure 1 Flow chart for assessing variation in life-cycle costs (continued) 
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4. Step 1: Identification of Critical Input Parameters 
 
An important step in the analysis is to identify critical input parameters. It may not be 
feasible to incorporate the variability of all input parameters in the analysis. To 
explore the possibility of incorporating the variability of input parameters that are 
critical for road deterioration prediction, a case study was conducted to identify such 
parameters. HDM-4 roughness deterioration model was used in the analysis. The 
HDM-4 roughness deterioration model is a function of pavement strength, traffic 
loading, cracking, rut depth and initial roughness of the analysis year. The HDM-4 
roughness deterioration model is given below: HDM-4, developed by the International 
Study of Highway Development and Management (ISOHDM), is a globally accepted 
pavement management system (ISOHDM 2001). Full details of HDM-4 deterioration 
models are given in HDM-4 documentation-volume 4.  
 
∆RI = Kgp (∆RIs + ∆RIc + ∆RIr + ∆RIt) + ∆RIe                 (1) 
 

( )( ) 413exp 5
0 YESNPKmKgmAGEaRIs b

−+=∆  
ACRAaRI c ∆=∆ 0  
RDSaRI r ∆=∆ 0  

agme RImKRI =∆  
 
Where; 
Kgp  =  calibration factor, Default value = 1.0 
∆RI   =  total annual rate of change in roughness 
∆RIs  =  annual change in roughness resulting from pavement    
             strength deterioration due to vehicles 
∆RIc  =  annual change in roughness due to cracking 
∆RIr = annual change in roughness due to rutting 
∆RIt = annual change in roughness due to pothole 
∆RIe  =  annual change in roughness due to climatic condition 
a0         =    constants for roughness due to pavement strength, cracking and rut 

depth 
m =  environmental coefficient 
Kgm =  calibration factor for environmental coefficient 
AGE3 =  pavement age since last overlay or reconstruction        
SNPKb =  adjusted structural number of pavement due to cracking 
YE4 =  annual number of equivalent standard axles (millions/lane)  
∆ACRA=  change in area of total cracking during the analysis year 
                         (% of total carriageway area) 
∆RDS = change due to rutting during the analysis year (m/km) 
RIa  = initial roughness of the analysis year 
 
Road data of 1688 km national highway located in the tropical northeast of 
Queensland, Australia, was used in the analysis. The probability distributions and 
statistical information of pavement strength, pavement age (AGE3), annual 
equivalent standard axles (YE4), percent (%) of cracking of total carriage way, 
standard deviation of rut depth and initial roughness were quantified. An extensive 
analysis using probabilistic method was conducted to determine the relationships 
between the annual rate of change in road pavement roughness and annual 
equivalent standard axles (YE4), pavement ages (AGE3) and pavement thickness. 
The analysis of these data shows a strong relationship between the annual rate of 
change in road pavement roughness and pavement thickness. Tables 1 to 6 show 
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the result of the statistical analysis of the road condition parameters for different 
pavement thicknesses.    
 
 
Table 1 Means, standard deviations and the probability distributions of 
pavement age (AGE3) for pavement thicknesses of 200-300 mm, 300-400 mm, 
400-500 mm and 500-600 mm. 

Thickness Parameter Mean Standard 
Deviation 

Probability 
Distribution 

200-300 mm AGE3 5.48 (years) 3.77 (years) Log-normal 
300-400 mm AGE3 5.04 (years) 3.76 (years) Log-normal 
400-500 mm AGE3 5.03 (years) 4.32 (years) Log-normal 
500-600 mm AGE3 6.04 (years) 2.01 (years) Log-normal 

 
Table 2 Means, standard deviations and the probability distributions of annual 
equivalent of standard axle load (YE4) for pavement thickness of 200-300 mm, 
300-400 mm, 400-500 mm and 500-600 mm 

Thickness Parameter Mean Standard 
Deviation 

Probability 
Distribution 

200-300 mm YE4 0.48 
(million/lane) 

0.137 
(million/lane) 

Log-normal 

300-400 mm YE4 0.69 
(million/lane) 

0.36 
(million/lane) 

Log-normal 

400-500 mm YE4 0.74 
(million/lane) 

0.49 
(million/lane) 

Log-normal 

500-600 mm YE4 0.99 
(million/lane) 

0.50 
(million/lane) 

Log-normal 

 
Table 3 Means, standard deviations and the probability distributions of 
modified structural number (SNPKb)for pavement thickness of 200-300 mm, 
300-400 mm, 400-500 mm and 500-600 mm 

Thickness Parameter Mean Standard 
Deviation 

Probability 
Distribution 

200-300 mm SNPKb 3.73 1.17 Log-normal 
300-400 mm SNPKb 3.70 1.39 Log-normal 
400-500 mm SNPKb 3.64 0.64 Log-normal 
500-600 mm SNPKb 3.64 0.64 Log-normal 

 
Table 4 Means, standard deviations and probability distributions of percentage 
of cracking per carriage way 
Thickness Parameter Mean Standard 

Deviation 
Probability 
Distribution 

200-300 mm % of crack 0.157 0.113 Log-normal 
300-400 mm % of crack 0.235 0.216 Log-normal 
400-500 mm % of crack 0.276 0.219 Log-normal 
500-600 mm % of crack 0.326 0.185 Log-normal 
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Table 5 Means, standard deviations and probability distributions of standard 
deviation rut depth 

Thickness Parameter Mean 
(mm) 

Standard 
Deviation 

(mm) 

Probability 
Distribution 

200-300 mm SD of rut depth 0.64 1.08 Log-normal 
300-400 mm SD of rut depth 0.70 1.38 Log-normal 
400-500 mm SD of rut depth 0.73 0.88 Log-normal 
500-600 mm SD of rut depth 0.78 1.24 Log-normal 

 
Table 6 Means, standard deviations and probability distributions of roughness 
(IRI) at the start of the analysis year 

Thickness Parameter Mean 
(IRI) 

Standard 
Deviation 

(IRI) 

Probability 
Distribution 

200-300 mm Initial IRI 1.84 0.47 Log-normal 
300-400 mm Initial IRI 1.85 0.62 Log-normal 
400-500 mm Initial IRI 1.70 0.47 Log-normal 
500-600 mm Initial IRI 1.74 0.44 Log-normal 

 
To identify the critical parameters that affect the prediction of road deterioration 
condition, HDM-4 roughness deterioration model given in Equation 1 was used in the 
analysis. The effect of an input variable on the annual change in roughness is 
assessed by assigning the probability distribution values of the input variable in 
Equation 1, while other variables remain constant. Monte Carlo simulation technique 
was used to simulate sample data from the input probability distribution and the 
statistics of the annual change in roughness were calculated.  
 
The same process was repeated to investigate the effects of the other variables on 
the annual change in road pavement roughness. The values of the parameters a0 
and m for Equation 1 are given in Table 7. The calibration factors Kgp and Kgm used 
default values of 1.00. 
  
The effect of the input parameters on the output annual rate of change was 
measured by the coefficient of variation (Cov). The coefficient of variation (Cov) is the 
standard deviation divided by the mean (σ/µ). Tables 8 to 13 show comparisons 
between the coefficients of variation (Cov) of the input parameters and of the 
predicted annual rate of change in road roughness.  
 

Table 7 Default values of m and a0 for pavement strength, cracking and rut 
depth 

Parameters Values used 
a0 for pavement strength 134 

a0 for cracking 0.0066 
a0 for rut depth 0.088 

m 0.025 
 
Table 8 Comparison between the coefficient of variation (Cov) of the input 
pavement strength (SNPKb) and of the output annual change in roughness 
Parameters 200-300mm 300-400 mm 400-500 mm 500-600mm 
  Cov    Cov   Cov   Cov  

SNPKb 0.308 0.376 0.175 0.175 
(∆RI) 0.594 1.00 0.289 0.368 
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Table 9 Comparison between the coefficient of variation (Cov) of the input 
pavement age (AGE3) and of the output annual change in roughness 
Parameters 200-300mm 300-400 mm 400-500 mm 500-600mm 
  Cov    Cov   Cov   Cov  

AGE3 0.688 0.746 0.859 0.333 
(∆RI) 0.0195 0.031 0.043 0.019 

 
 
 
 
Table 10 Comparison between the coefficient of variation (Cov) of the input 
annual equivalent standard axles (YE4) and of the output annual change in 
roughness 
Parameters 200-300mm 300-400 mm 400-500 mm 500-600mm 
  Cov    Cov   Cov   Cov  

YE4 0.285 0.522 0.662 0.505 
(∆RI) 0.065 0.153 0.216 0.194 

 
Table 11 Comparison between the coefficient of variation (Cov) of the input % 
of cracking of the total carriageway and of the output annual change in 
roughness 
Parameters 200-300mm 300-400 mm 400-500 mm 500-600mm 
  Cov    Cov   Cov   Cov  
% of cracking 0.847 0.919 0.793 0.567 

(∆RI) 0.005 0.009 0.008 0.006 
 

Table 12 Comparison between the coefficient of variation (Cov) of the input 
standard deviation of rut depth and of the output annual change in roughness 
Parameters 200-300mm 300-400 mm 400-500 mm 500-600mm 
  Cov    Cov   Cov   Cov  
SD of rut depth 1.686 1.971 1.205 1.589 

(∆RI) 0.727 0.784 0.472 0.585 
 

Table 13 Comparison between the coefficient of variation (Cov) of the input 
initial roughness and of the output annual change in roughness 
Parameters 200-300mm 300-400 mm 400-500 mm 500-600mm 
  Cov    Cov   Cov   Cov  

Initial IRI 0.228 0.335 0.276 0.252 
 

(∆RI) 0.131 0.100 0.074 0.053 
 
Table 8 shows that the Cov values of the output annual changes in roughness were 
greater than those of input pavement strength, while the Cov values of the output 
annual rate of change in roughness shown in other tables (Tables 9 to 13) were 
smaller than the variability of input parameters. These results indicated that among 
the variability of the input parameters, pavement strength had significantly influenced 
the variability of annual change in roughness since the variability of the output is 
greater than the variability of the input pavement strength.  
 
The next important parameter that influences the output annual rate of change in 
roughness is the rut depth. The Cov values of the output annual change in roughness 
were 0.727, 0.784, 0.472 and 0.585, which resulted from the Cov values of input 
standard deviation of the rut depth of 1.686, 1.971, 1.205 and 1.589, respectively. In 
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this case, the Cov values of the output annual change in roughness decrease when 
compared with the Cov values of the input rut depth.  
 
The annual equivalent of standard axles (YE4) and initial roughness contribute 
moderately to the variability of annual change in roughness. The Cov values of 
output annual change in roughness were in the range of 0.065 to 0.216 and of 0.053 
to 0.131 resulting from Cov values ranging from 0.285 to 0.665 (for YE4) and from 
0.228 to 0.335 (initial roughness), respectively.  Pavement age and cracking had no 
significant effect on the variability in annual change in roughness. 
 
 

5. Step 2: Establish Probability Distributions of Critical Input 
Parameters 

 
From the previous section, the critical input parameters identified include pavement 
strength, rut depth, annual equivalent standard axle loads and initial roughness. The 
next step in the analysis is to establish the probability distributions of the stochastic 
characteristics of these critical input parameters along the road network. 
 
 5.1 Establish Probability Distribution of Pavement Strength 
 
For illustration, Figure 2 shows the stochastic characteristic of pavement strength for 
a 92 km national highway located in the tropical northeast of Queensland. The 
pavement strength is quantified by the Structural Number (SN). Structural Number is 
used globally in pavement management systems to predict structural capacity and 
the life of pavement structures at the network or project level (Rhode 1994, Rhode 
and Hartman 1996, Salt and David 2001, O’Brien 2002). From the data presented in 
Figure 2, the probability distributions of pavement strength were quantified for each 
kilometre. Figure 3 shows an example of probability distributions of the structure 
number (SN) for each kilometre of the first five kilometres. Details of the analysis are 
given in Piyatrapoomi and Kumar (2003). 
 
The structural numbers are usually determined from pavement deflection data which 
are obtained when the pavement is subjected to a “standard” load.  Pavement 
deflection data can be converted into pavement strength by using a number of 
available functions (O’Brien 2002, Rhode 1996, Rhode 1994, Salt and David 2001, 
Evdorides 1999). In this study, the Falling Weight Deflectometer (FWD) deflection 
tests were used to collect pavement strength data. 
 
In this test method, the FWD equipment applies impulse loading to a circular plate in 
contact with the pavement surface. When the pavement surface is subjected to the 
load, the pavement yields, and a deflection bowl is created. Surface deflections at 
various distances from the centre of loading are measured through a series of 
geophone sensors at fixed distances from the load and stored in a data file. Details of 
the Falling Weight Deflectometer (FWD) can be found in O’Brien, 2002. 
 
Pavement deflections can be transformed into structural numbers by many 
recommended functions (Rhode 1996, Rhode 1994, Salt and David 2001, Evdorides 
1999).  Robert’s function was tested with a large data set of a wide range of New 
Zealand unbound granular pavements. Many functions were used and it was found 
that Robert’s function yielded a reasonably close relationship to r2 > 0.9 (Salt and 
Stevens 2004).  
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Robert’s function is given as; 
 

)(936.0)(167.4992.12 900DLogDLogSNP o +−=        (2) 
 
Where; 
 
SN  = the Structural Number 
Do  = pavement deflection under load cell 
D900  =  pavement deflections at locations 900mm from the load cell 
 
The adjusted structural number due to cracking was taken as 97.5 percent of the 
structural number obtained from Robert’s function. 
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Figure 2 Pavement strength expressed in terms of the Structural Number (SN) along 
the road length of a 92 km national highway  
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Figure 3 Typical probability distributions of Structural Numbers of the first five 
kilometres of the 92-Kilometre. 
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In some cases, pavement structure data (either deflection or pavement layer data) 
may not be available, and alternative methods of calculation will need to be used. 
Australian Road Research Board’s method can be used as it needs only few input 
data to calculate the structural capacity of the pavement. This method requires only 
few input data such as annual average daily traffic and pavement age. We may not 
be able to characterise the variability of pavement strength for small sections using 
this method. Most Australian road authorities recognised the importance of pavement 
structural data on investment decision process. Currently, they plan to acquire more 
pavement structural data with additional investment at network level. To this end, it 
was suggested by the research team that the variability of pavement structural data 
of the analysed road length will be reassigned for each small segment of the road 
length.  

 
5.2 Establish Probability Distribution of Annual Equivalent Standard Axle 
Load 

 
To determine the annual number of equivalent standard axles, it is necessary to 
transform the annual average daily traffic (AADT) into the annual equivalent standard 
axles.  
 
Four types of vehicles were categorised by Queensland Department of Main Roads, 
namely: 
 

• Passenger cars 
• Rigid trucks 
• Articulated semi-trailer trucks and 
• B-Double trucks and road trains 

 
Table 14 summarises some typical proportions of each vehicle type identified by 
Queensland Department of Main Roads. These percentages were assessed and 
used by the Queensland Department of Main Roads for the purpose of assessing 
road pavement condition. In reality, the mix proportions of vehicle classes in the 
traffic stream have their own variability characteristics.  
 
Table 15 gives the coefficients that transform the annual average daily traffic into the 
equivalent standard axle counts. The annual average daily traffic (AADT) was 
collected at various traffic data collection points and weigh-in-motion sites. 
 
Further study will be conducted to assess the variability of the percentage of vehicles 
for Queensland road networks. An analysis will also be conducted to explore the 
possibility to assess the variability of the coefficients (ESA Factors) that transform 
vehicle types into the equivalent standard axle load.   
 
Table 14 Percentages of vehicle types used in the analysis 

Number of 
vehicles 

Passenger cars
(%) 

Rigid trucks 
(%) 

Articulated 
trucks (%) 

B-Double / 
Road Trains 

(%) 
1500-3000 76 10 10 4 
3001-5000 83 7 8 2 
5001-10000 83 7 8 2 
> 10001 89 7 3 1 
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Table 15 ESA Factors for Vehicle Classes. 
Passenger cars Rigid trucks Articulate trucks B-Double / Road 

Trains 
0.0008 2.74 3.89 4.93 

 
 

5.3 Establish Probability Distribution of Rut Depth 
 
Rut depths were collected by the Network survey vehicles (laser profilometer).  The 
average rut depth and rut depth standard deviation are used for HDM-4 analysis. The 
probability distributions of the average rut depth for small sections are established. 
 
 

5.3 Establish Probability Distribution of Initial Roughness 
 
Roughness is collected by the Network survey vehicles (laser profilometer). Initial 
roughness is the roughness recorded at the start of the analysis year and is 
measured in the international roughness index (IRI). The probability distributions of 
IRI for small sections of a road network are established.   
 
 
6. Step 3: Modelling Road Networks for HDM-4 Analysis  
 
Highway Development and Management (HDM-4) System software will be used to 
conduct a series of life-cycle cost analyses. HDM-4, developed by the International 
Study of Highway Development and Management (ISOHDM), is a globally accepted 
pavement management system. It is a computer software package used for planning, 
budgeting, monitoring and management of road systems. There are three analysis 
options in HDM-4, which include:  (1) Strategy Analysis, (2) Program Analysis and (3) 
Project Analysis. The Strategy Analysis Option was employed in this study in 
assessing the effects of the variability of pavement strength on the estimate of 
maintenance and rehabilitation budgets. 
 
In modelling road networks for HDM-4 analysis, a road network is divided into small 
sections. Pavement characteristics including pavement type, pavement condition, 
traffic loading and climatic zone are assigned for each section according to recorded 
data. The probability distributions, mean values and standard deviations of critical 
input parameters were identified for each section. Framework for modelling critical 
input parameters for assessing the life-cycle cost statistics is given below: 
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Figure 4 Flow chart for modelling road networks for HDM-4 analyses 
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7. Step 4: Simulating Sample Data of Critical Input 
Parameters by Latin-Hypercube Sampling Technique  

 
Input parameters that have been identified as critical for assessing variation in life-
cycle costs include: 
 

1. Pavement strength (quantified by the structural number (SN)) 
2. Annual change in rut depth (expressed in terms of standard deviation rut 

depth) 
3. Traffic loading (expressed in terms of annual equivalent standard axle loads) 
4. Initial roughness (IRI) 
5. Unit costs 

 
Unit costs are expected to contribute a great deal to the variation in life-cycle cost 
estimates. Thus, the effect of the unit costs in the variation is also investigated. The 
probability distributions, mean values and standard deviations of these critical 
parameters for each road section are quantified. Sample values of these critical input 
parameters are sampled by Latin-Hypercube sampling technique. 
 
In the Latin-Hypercube sampling technique, the probability distributions of the 
structural numbers, annual change in standard deviation rut depth, annual equivalent 
standard axle loads, initial roughness and unit costs are divided into N intervals with 
equal probability.  For example, the probability distributions of the critical input 
parameters divided into ten equal probabilities are given in Figures 5 to 9. The areas 
of 1 to 10 in the figures have equal probabilities of occurrence.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 An example of a probability distribution of structure numbers (SN) divided 
into ten equal probabilities 
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Figure 6 An example of a probability distribution of annual change in standard 
deviation rut depth divided into 10 equal probabilities of occurrence 
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 An example of a probability distribution of annual equivalent standard axle 
loads divided into 10 equal probabilities of occurrence 
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Figure 8 An example of a probability distribution of initial roughness divided into 10 
equal probabilities of occurrence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 An example of a probability distribution of unit costs divided into 10 equal 
probabilities of occurrence 
 
In Latin-Hypercube sampling technique, the probability distributions of the critical 
input parameters are identified for each road section. One sample is randomly 
selected to represent the sampled value of each interval. 
 
Piyatrapoomi (1996) found that sampling observational values of thirty data points 
were enough to obtain good estimates of the means, standard deviations and 
probability distribution functions of output variables. To obtain better results, in this 
study the probability distributions of the critical input parameters were divided into 
forty intervals, each interval having 2.5 per cent probability of occurrence. One value 
of each interval is randomly selected to be the observed value of each interval, so 
that forty sampled values are obtained for each kilometre. Details of the Latin 
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Hypercube Sampling Technique can be found from the original paper (Iman and 
Conover, 1980). 
 

8. Steps 5 and 6: Input sampled data of the critical input 
parameters for HDM-4 for analyses and conduct the 
analysis 

 
In this study, the effect of each critical input parameter on cost estimates is 
investigated. As mentioned, the critical input parameters include: 
 

1. Pavement strength (quantified by the structural number (SN) ) 
2. Annual change in rut depth (expressed in terms of standard deviation rut 

depth) 
3. Traffic loading (expressed in terms of annual equivalent standard axle 

loads) 
4. Initial roughness (IRI) 
5. Unit costs 

 
From the previous section, forty values were sampled from the probability distribution 
of one critical parameter to represent its variability for each kilometre. Forty HDM-4 
input data files are prepared for the analysis to assess the effect of that critical input 
parameter on the cost estimates. In such an analysis, the values of other input 
parameters remain constant, whilst only the values sampled from the probability 
distribution of the considered critical input parameter are varied for each kilometre. A 
series of HDM-4 analysis runs is executed to obtain the statistics of the output cost 
estimates. The probability distribution and statistical information of the output cost 
estimates statistics are quantified. The degree of variation is investigated using the 
coefficient of variation (i.e. the standard deviation value divided by the mean value).  
 
The same process is repeated for investigating the impact of the other critical input 
parameters on the cost estimates. 
 
The aggregate effect of the critical input parameters on the cost estimates can be 
linearly combined as follows: 
 

2

1

22 )( iX
n

i
iaB σσ ∑

=
=         (2) 

 
Where σ2= overall variance of the cost estimates representing the error in cost 
estimates, ai= constants, a2

Xi= variance of cost estimates contributed by each critical 
input parameter.  
 
Alternatively, the overall variance, σ2, of a cost estimate is obtained by including the 
variability of all critical input parameters in a single analysis. The procedure of the 
Latin-Hypercube sampling technique for such analysis is given below: 
 

1. The probability distribution of each critical parameter is divided further into 
equal probabilities. The probability distribution is divided into forty equal 
probabilities. 

 
2. Randomly select one sample value from each of the divided probabilities. One 

value represents the sampled value of a divided probability. The same 
process is repeated for the remaining divided probabilities to obtain forty 
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values representing the overall sampled values of the probability distribution. 
By using the Latin-Hypercube sampling technique, the overall variability of a 
probability distribution can be represented, in this case, by forty sample data. 

 
3. Randomly select one value from the forty sampled data for each critical input 

parameter. Therefore, there are five sampled values representing five critical 
input parameters. The sample process is repeated for the remaining sampled 
data of the critical input parameters. Hence, there are forty sets of the critical 
input parameters. The variability of each critical input parameter is 
represented by each set of data using the random sampling process. 

 
4. The above random process is applied for each or one kilometre. The same 

process is repeated for the other kilometres of the road network to be 
considered in the analysis. 

 
5. There are forty data sets of the critical input parameters. The variability of all 

critical input parameters is randomly selected and represented in these forty 
input data sets. 

 
9. Steps 7 and 8: Statistical analysis of outputs and 

investigation of variation in cost estimates 
 
There are forty output files obtained from a series of HDM-4 analyses. The costs for 
maintenance and rehabilitation are calculated for each year. For an illustration, a 
road network of 92km national highway was used in the analysis. Details of the 
analysis are given in Piyatrapoomi et. al. (2004) and Piyatrapoomi and Kumar (2004). 
The variability of pavement strength (i.e. structural number) was considered. The 
forty values of cost estimates for each year were statistically analysed. Figure 10 
shows undiscounted mean values and standard deviations for each year cost 
estimate for a 25-year analysis period. From Equation 1, the discounted life-cycle 
costs are obtained by multiplying life-cycle costs with the discount factor, given 
below: 
 

( )tr+
=

1
1α  

 
Where: α = discount factor, r = discount rate, t= length of time (years). 
 
 
Figure 11 shows the resulting coefficients of variation of the cost estimates for the 
25-year period. 
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Figure 10 Mean and standard deviation values of cost estimates for a 25-year 
analysis period  
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Figure 11 Coefficients of variation (Cov) for 25-year life-cycle cost estimates 
 
The degree of variation in cost estimates can be assessed by the coefficients of 
variation (Cov’s). Figure 11 shows the coefficients of variation of cost estimates for 
the 25-year analysis period. In this case the largest coefficient of variation value is 
0.59 occurring in year four (2007). The coefficient of variation was very small (0.034) 
for the first year of the analysis. This is due to the fact that only routine maintenance 
was required. The coefficients of variation are in the range of 0.18-0.43 when major 
maintenance and rehabilitation were required. The mean of the coefficients of 
variation is 0.24. 
 
From the statistical information of the cost estimates, i.e. the probability distribution, 
mean and standard deviation values, a level of confidence in costs can be estimated. 
A reasonable level of reliability for cost estimates each year can be calculated from 
the output probability distributions.  For instance, a 95th percentile cost estimate can 
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be investigated. A 95th percentile cost estimate is an estimate that there is only 5% 
chance that the cost will exceed the estimated value. Figure 12 shows an example of 
the probability distribution for a cost estimate for year 2014. The figure shows how to 
calculate the mean and the 95th percentile cost estimate and the mean estimate 
(approximately 50th percentile).  
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Figure 12 Cumulative probability distribution of a cost estimate for year 2014. 

 
Figure 13 shows a comparison between the mean and the 95th percentile cost 
estimates for a 25-year maintenance and rehabilitation. For illustration, the mean 
cost estimate for the year 2014 is $4.07 million, while the 95th percentile is $5.83 
million. In this case, there is an approximately 50% chance that the cost will exceed 
$4.07 million, while there is only a 5% chance that the cost will exceed $5.83 million. 
Decision-makers can make informed decisions based on this information on the level 
of confidence they require. They can also investigate asset performance against 
different cost estimate percentiles (e.g. 95th, 90th, 80th etc.). For instance, we may 
want to know that by allocating a budget equal to the 95th  percentile cost estimate, 
what would be the probability of pavement roughness that were greater than a 
maximum roughness threshold. A research project 2003-029-C "Maintenance Cost 
Prediction for Roads" funded by the Cooperative Research Centre for Construction 
Innovation will investigate this issue.  
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Figure 13 Comparison between the mean cost estimates and the 95th percentile cost 
estimates for 25-year maintenance and rehabilitation cost estimates. 
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10. Conclusions 
 
This report presents a methodology for assessing variation in cost estimates for road 
maintenance and rehabilitation. This method is based on the probability-based 
analysis and Latin-Hypercube sampling techniques. Five parameters were identified 
as critical input parameters for variation in cost estimates. These parameters include 
pavement strength, rut depth, annual equivalent standard axle loading, initial 
roughness and unit costs. The variability of the critical input parameters is included in 
the analysis by the Latin-Hypercube sampling technique. An example of variation in 
cost estimates for a life-cycle cost of a 92km national highway was presented for 
illustration. The variation in cost estimates can be expressed in terms of the 
coefficient of variation (Cov). For this case study, the Cov values of the cost 
estimates were in the range of 0.134 to 0.59. The coefficient of variation was very 
small (0.034) for the first year of the analysis. This is due to the fact that only routine 
maintenance was required. The coefficients of variation are in the range of 0.18-0.59 
when major maintenance and rehabilitation were required. The mean of the 
coefficients of variation is 0.24. 
 
The output statistical information of the cost estimates were useful information for 
further analysis in selecting cost estimates with a certain degree of confidence (e.g. 
95th percentile at which there is a 5% chance that the cost would be greater). A 95th 
percentile costs can be estimated for the cost on a yearly basis or cumulative costs. 
A comparison between the mean and the 95th percentile cost estimates for a 25-year 
maintenance and rehabilitation was presented. 
 
In this research project, other critical input parameters will be incorporated in the 
analysis to further assess the effect of other critical parameters on the cost estimates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 22

List of Bibliography 
 

1. Abaza, K. A. (2002). Optimal flexible Pavement Life-Cycle Analysis Model, 
Journal of Transportation Engineering ASCE, Vol. 128, No. 6, (pp. 542-549). 

2. Ang, A. H-S., and W. H. Tang. Probability Concepts in Engineering Planning 
and Design: Volume I and Volume II, John Wiley & Sons, Inc., New York, 
1975. 

3. Evdorides H. T., and H. G. R. Kerali. 1999 Pavement and Structural 
Management System: Road Infrastructure Maintenance Evaluation Study. 
Project for EC-DG-VII RTD Programme, School of Civil Engineering, The 
University of Birmingham, UK. 

4. Gray, K. G. and Travers, K. J. The Monte Carlo Method. Stipes Publishing 
Company, Illinois, USA, 1978. 

5. Imam, R.L., and Conover, W.J. (1980) Small Sample Sensitivity Analysis 
Techniques for Computer Models, with an Application to Risk Assessment. 
Communication in Statistic, A9 (17), 1749-1842. 

6. Kong, J.S. and Frangopol, D.M. (2003). Life-Cycle Reliability-Based 
Maintenance Cost Optimisation of Deteriorating Structures with Emphasis on 
Bridges, Journal of Structural Engineering ASCE, Vol. 129, No. 6 (pp. 818-
828). 

7. Kong, J.S., Frangopol, D.M. (2003). Evaluation of Expected Life-Cycle 
Maintenance Cost of Deteriorating Structures, Journal of Structural 
Engineering ASCE, Vol. 129, NO. 5, (pp. 682-691). 

8. Liu, M. and Frangopol, D.M. (2004). Optimal Bridge Maintenance Planing 
Based on Probabilistic Performance Prediction, Engineering Structures 
Elsevier Ltd. (pp. 991-1002). 

9. Noortwijk, J.M.v and Frangopol, D.M. (2004). Two Probabilistic Life-Cycle 
Maintenance Models for Deteriorating Civil Infrastructures, Probabilistic 
Engineering Mechanics, Elsevier Ltd.  

10. O’Brien, K 2002. Calibration of Pavement Strength (Structural Number) for 
Use within the Highway Development and Management System (HDM-4) and 
SCENARIO Millennium. Road Management Division, Queensland 
Government Department of Main Roads, Australia. 

11. Piyatrapoomi, N. (1996) A Probabilistic Study of Seismic Vulnerability and 
Reliability of R/C Building in Bangkok. Ph.D. Dissertation, The University of 
Melbourne, Australia. 

12. Piyatrapoomi, N. and Kumar, A. (Sept. 2004) ‘Review of the Literature: 
Maintenance and Rehabilitation Costs for Roads (Stochastic Modelling of 
Life-Cycle Costs)’ CRC CI Report No. 2003-029-C/001, The Cooperative 
Research Centre for Construction Innovation, Queensland University of 
Technology, Brisbane, Queensland, Australia. 

13. Piyatrapoomi, N., and Kumar, A., (Aug. 2003) ‘A Methodology for Risk-
Adjusted Assessment of Budget Estimates in Road Maintenance and 
Rehabilitation’, CRC CI Report No. 2001-010-C/008, The Cooperative 
Research Centre for Construction Innovation, Queensland University of 
Technology, Brisbane, Queensland, Australia. 

14. Piyatrapoomi, N., Kumar, A., Robertson, N., & Weligamage, J. (Oct. 2004) 
‘Reliability of Optimal Intervals for Pavement Strength Data Collection at the 
Network Level’ In: Proceedings of the 6th International Conference on 
Managing Pavements, Oct. 19-24, Brisbane, Queensland, Australia. 

15. Rhode, G. T. 1994 Determining Pavement Structural Number from FWD 
Testing. Transport Research Record 1448, TRB, National Research Council, 
Washington, D.C. 



 23

16. Rhode, G. T., and A. Hartman. 1996 Comparison of Procedures to Determine 
Structural Number from FWD Deflections. Combined 18th ARRB Transport 
Research Conference and Transit New Zealand Land Transport Symposium, 
New Zealand 

17. Salt, G., and S. David. 2001 Pavement Performance Prediction: 
Determination and Calibration of Structural Capacity (SNP). 20th ARRB 
Transport Research Conference, Victoria, Australia. 

18. The International Study of Highway Development and Management 
(ISOHDM), Highway Development Management (HDM4) version 1.3, 
University of Birmingham, UK, 2001.  

19. Zayed, T.M., Change, L-M. and Fricker, J.D. (2002) Life-Cycle Cost Analysis 
using Deterministic and Stochastic Methods: Conflicting Results, Journal of 
Performance of Constructed Facilities ASCE, Vol. 16, No. 2 (pp. 63-74). 

 
Author Biography 
 
Noppadol Piyatrapoomi obtained his Ph.D. degree from the University of Melbourne. 
He has practiced as a civil and structural design engineer for ten years before he 
joined RMIT University Melbourne, Australia in 2002 His research interests include 
the application of risk and reliability in decision-making for infrastructure asset 
management; assessment of public risk perception on engineering investments; risk 
and reliability assessment of structures; seismic risk and reliability assessment of 
structures; the application of an evolutionary method for data analysis. He developed 
an evolutionary method of data analysis during his Ph.D. study. This method can be 
used to refine existing functions and develop new formulas by using probability, 
statistical, and risk assessment theories in the analysis. The method provides a more 
fine-grained analysis and yields more accurate results and better fitness of data than 
commonly used methods, such as regression or correlation analyses.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 




