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EXECUTIVE SUMMARY 
 

The project has applied the concept of case-based reasoning to prediction of lifetime for 
metallic building components.   This was considered a suitable method to combine a range of 
different data sources and determine the most appropriate answer for any given situation. 

Discussions with the project partners identified two areas of particular interest for formulation 
of initial applications. 

The project has delivered: 

• Design and implementation of a case-based reasoning (CBR) engine for life 
prediction of metallic building components in general, 

• An application of the CBR engine tailored to predicting durability of gutters in 
Queensland schools, 

• A stand-alone program for modelling the degradation rate of gutters using the CSIRO 
holistic model,  

• A stand-alone program for estimating salt deposition levels on bridge structures in 
Queensland to be used as the basis for a CBR program in the future, and 

• A report on the Sunshine Coast site visit to school and bridge locations, which has 
identified several corrosion problems of interest to the industry partners. 

 

The implementation of the CBR engine necessitated characterisation of the environment and 
building locations to enable development of case definitions.  Similarity rules were formulated 
for a number of parameters so that different cases could be compared and the closest match 
selected. 

 

The QDPW application incorporates several sources of data for access by the CBR engine.  
These include the Delphi survey (from Project 2002-010-B), maintenance information from 
the QDPW and the holistic model.  The holistic model required modifications to tailor the 
outputs for use with gutters.  The three main materials currently used in gutters are 
galvanised steel, Zincalume and Colorbond® so rules for the degradation of polymeric 
coatings had to be determined and included in the model for use with Colorbond®.  In 
addition, experiments were carried out to determine an appropriate ‘Time of Wetness’ factor 
for different gutter states, given that they are a building component where dirt can 
accumulate and affect the run-off of water and drying rate.  The modelling calculations result 
in a mass loss per year for metals so this had to be related to a predicted life span, with 
consideration also given to whether this is aesthetic life or service life.  These modifications 
to the holistic model were incorporated into a stand-alone program which can be used to 
estimate degradation of gutters at any location in Australia. 
 
The QDMR application is not as advanced as the gutter application.  The project team has 
focussed on the definition of structural elements of five typical Queensland bridges to define 
representative cases which could be used in a future extension into CBR.  A detailed CFD 
analysis of salt deposition on the five bridge structures has been carried out and elements 
with common deposition rates were identified.  A stand-alone program has been developed 
that will estimate a salt deposition factor for a selected bridge element at any location in 
Queensland. 
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The development of these applications will provide economic benefits to the two industry 
partners.  These are difficult to quantify but contain elements of design savings and 
maintenance savings for facility owners, managers and maintenance providers.  The 
potential for the tools is significant given the amount of metal used in the areas of interest 
and the levels of corrosion found in the project site visit to the Sunshine Coast. It has been 
estimated that nearly $5 million was spent by Queensland Department of Public Works in 
03/04 in replacing corroded metallic components of Queensland schools.  Substantial cost 
savings can be made through the use of the S/W tool to select construction materials suited 
to the environment in which they will be used, and optimisation of maintenance schedules. 
 
 
 



  

  3

1. INTRODUCTION 
 

1.1 Background 
 

Many processes in design, construction and maintenance of infrastructure are complex and 
highly influenced by a wide range of design, climate and usage parameters. For example 
predicting corrosion rates, and hence component life, is a complex process which includes 
reasoning about examples in which corrosion rates are known, knowledge of the material 
properties and the impact of the environment on those materials, and an interpretation of the 
site.  

 

The ability to accurately predict the lifetime of building components is crucial to optimising 
building design, material selection and scheduling of required maintenance. ISO 15686 
(Clause 9) has suggested the factor method as a means of estimating the service life of a 
particular component or assembly in a specific set of conditions.  The factor method is based 
on a reference service life (RSL), which is defined as the expected service life of a 
component or assembly situated in a well-defined set of conditions.  It incorporates a series 
of modifying factors that relate to the specific conditions of the case to give the predicted 
service life distribution of a component (PSDLC) according to the equation: 

 

PSLDC = RSLC · fA · fB · fC · fD · fE · fF · fG                                           …Eqn 1.1 

The factor indices relate to quality of the component, design, work execution, environments 
etc.  The problem still remains, however, of defining the reference service life for a vast array 
of building components. 

 

Two approaches have been used in the past to predict the corrosion process - statistical and 
process-based models. Statistical models have proven unable to cope with the complexity of 
the problem. Studies have demonstrated that statistical models of component life though 
useful are extremely limited in their application and cannot predict outside the data sets used 
to generate the models.  Thus a statistical model of life of reinforced concrete in bridges in 
inland NSW is unlikely to be useful for predicting life for the same bridges on the coast and 
could not predict life of reinforced concrete in buildings etc.   

 

Process-based models are much more flexible, for example the Construction Mapping 
System (CMS) developed by CSIRO can predict the life of galvanised steel within any 
building anywhere in the country.  This method is based on the holistic model, within which 
processes controlling corrosion across a wide range of physical scales and based on 
different phenomena are modelled.  A solution to component life prediction is generated by 
post-processing the corrosion rate obtained from combining different modules defining 
specific processes through first principles.  Although the theoretical component life of a 
component can be calculated for any applicable area within Australia, the accuracy of this 
result reduces dramatically when input data crosses the boundary conditions of the model. 
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1.2 Problem Definition  
 

The problem is to combine the two approaches to corrosion prediction so that a variety of 
sources of data, from studies, from experience and from first principles using the holistic 
model, can be combined to form the basis of the lifetime prediction tool.  In addition, once the 
predicted lifetime for a particular situation has been determined, then this should be available 
for future reference. Thus, the required system must be able to store, manipulate and 
compare numerous use-case scenarios.  Case-based reasoning is seen as an ideal method 
for linking together the different data sources and reusing previous experiences in the current 
context to solve new problems. 

 

The Queensland Department of Public Works and Queensland Department of Main Roads 
require a means to predict the life of building components subjected to atmospheric 
corrosion.  This tool will form the basis for maintenance optimisation and risk assessment 
used in developing asset replacement and repair strategies.  In particular the software tools 
to be developed by this project will provide information on life prediction of gutters (as used in 
Queensland state schools) and life prediction of metal components in Queensland bridges. 

 

The development of these applications will provide economic benefits to the two industry 
partners.  These are difficult to quantify but contain elements of design savings and 
maintenance savings for facility owners, managers and maintenance providers.  The 
potential for the tools is significant given the amount of metal used in the areas of interest 
and the levels of corrosion found in a site visit carried out in September 2004 as part of the 
project. It has been estimated that nearly $5 million was spent by Queensland Department of 
Public Works in 03/04 in replacing corroded metallic components in Queensland schools.  
Substantial cost savings can be made through the use of the project software tool to select 
construction materials suited to the environment in which they will be used. 

 
The development of these two applications is discussed in this report, starting with a 
discussion of the benefits of situated case-based reasoning in Chapter 2.  Chapter 3 looks at 
how this can be applied to the prediction of corrosion rates for metal building components in 
general.  This is followed by the documentation of the design and implementation of the CBR 
engine in Chapter 4.  The development of the two specific applications for the CRC industry 
partners are discussed in Chapters 5 and 6.  The site visit to selected schools and bridges on 
the Sunshine Coast is summarised in Chapter 7 and suggestions for future extensions of the 
work are addressed in Chapter 8. 
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2. SITUATED CASE-BASED REASONING MODEL 
 

2.1 Definition 
 

Case –based reasoning (CBR) provides a model for design reasoning based on the use of a 
set of previous design experiences represented as design cases (Maher et al 1995).  These 
cases are indexed and retrieved using information about a current design problem, and then 
through analogical reasoning, a selected case (or set of cases) is adapted until it satisfies the 
current design specifications and constraints.  One aspect of design reasoning that is not 
addressed by traditional models for case-based reasoning is that designing is situated (Gero 
1998).  To accommodate the notion of situatedness in designing, the basic idea of case-
based reasoning is extended to create a model of situated case-based reasoning (situated 
CBR) Figure 2.1, based on a model of constructive memory that operates within a framework 
of situatedness. 

 
Figure 2.1 A conventional case-based reasoning model (a) and a situation case-based reasoning model (b) 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

In the situated CBR model, instead of focusing on just the design problem and finding a 
solution to it, emphasis is also given to the environment within which the problem is framed.  
The model interprets the environment according to the current situation and the problem is 
framed accordingly.  This interpretation is dependent on the current environment, the internal 
state of the situated CBR system and the interactions between the system and the 
environment. 

 

The internal state of a situated CBR system is defined by its content.  This content is made 
up of individual entities that are classified either as experience or knowledge.  Interactions 
between the system and the environment define different interpretations of the environment 
according to different interpretations of the selected entities used for memory construction. 

A distinctive characteristic of situated CBR is the way the knowledge and experience are 
understood and used.  In CBR, retrieved cases provide a solution or a starting point for case 
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adaptation.  In Situated CBR, the memory of an experience and/or knowledge (entities) is 
constructed according to an interpretation of the environment and an interpretation of the 
selected entities relevant to the problem at hand.  Rather than adapt a selected case to new 
design specifications, the selected entities are interpreted according to the interactions 
between the system and the environment.  These interactions provide a specific view 
(interpretation) of the relationship between the design specifications and the environment.  
This view dictates another interpretation of the environment that can introduce new 
specifications.  This “feedback” loop causes the interpretations of the environment and the 
selection of experiences and knowledge to occur recursively until a common interpretation is 
reached. 

 

The recursive interpretations of the environment and the selected entities result in new 
memories as well as new indices to the selected experiences and knowledge to be created.  
Memories are constructed by: 

• instantiating the parameter values of the selected entities according to the current 
situation; 

• mapping existing parameters in the selected entities to new ones through an 
analogical process; and 

• restructuring the selected entities according to the current situation. 

This is similar to creation of new functional or behavioural indices to an old design prototype 
within the domain of situated analogy (Gero and Kulinski, 2000). 

 

2.2 Constructive Memory Model 
 

Figure 2.2 illustrates a conceptual model of memory construction.  Memories are constructed 
according to the environment, the knowledge and experience of a situated computational 
system and the interactions between the system and the environment. 
 
Figure 2.2 Conceptual model of memory construction (from Gero 1999) 
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Knowledge can be considered as general facts that can refer to a generalised or compiled 
construct. (Rosenman et al. 1991) such as a design prototype (Gero 1990) that collects 
function, behaviour and structure information related to designing within a single 
representation. Methods to acquire knowledge include: 

• Abstraction over classes of objects, as in the case of design prototypes, 

• Generalisation over facts as in the case of design guidelines (Boothroyd 1994), rules 
(Witten and Frank 2000) or formulas; or 

• Direct learning from external sources such as books, domain experts. 

The generic nature of knowledge implies that it does not carry with it any particular solution.  
A particular situation has to be fitted to the knowledge and a solution has to be inferred from 
it. 

 

Experience refers to previous episodes recorded in or encountered by the system.  It entails 
the system’s involvement as the “first person” in dealing with the substance of that episode.  
This form of experience can refer to experimental data collected under controlled conditions 
or to information obtained by data logs. 

 

Memory is a construct created “here and now” for the purpose of operating within the current 
environment according to a design goal.  Knowledge and experience provide the base for 
constructing a memory according to the current situation. 

 

Memory construction commences with the current situation providing the cue to start off the 
process.  Related knowledge and experience are activated according to the cue and the 
relevant knowledge and experience are selected as a basis for memory construction.  After 
this selection, the environment and the selected experience are recursively interpreted to 
construct a memory.  This memory contains the required actions to be effected to the 
environment according to the current design goal.  Each memory, after it has been 
constructed, is added to the system as a new experience by augmenting its representation 
experience.  This new experience is available for subsequent memory constructions. 

 

2.3 Framework of Situatedness 
 

The model of constructive memory resides within the framework of situatedness in designing 
(Liew and Gero 2004). This notion of situatedness encompasses the fundamental ideas of 
interaction, memory construction and interpretation. 

 

Interaction implies that the content of a situated CBR system are not encoded a priori and 
indexed for use later, but rather the content of the system is developed through interactions 
with the environment.  The development of this content entails the construction of a memory 
about related entities, influenced by any knowledge and experience gained since the entities, 
and interpreted by the prevailing situation. 

 

Memory construction provides the basis for the recursive interpretation of the current 
situation.  This process of constructing new memory is similar to the notion of “re-
representation” described in Gero and Kulinski 2000.  A constructed memory defines both 
the interpretation of the relevant content and the interpretation of the environment in light of 
the current interactions between the system and the environment.  The content of the 
situated CBR system is interpreted through a “filter” defined by the present situation.  An 
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experience and/or knowledge is not “copied” into the present but rather it is interpreted 
according to the current situation.  This interpretation situates the relevant content of the 
system through the current environment so that it is not necessary to encode all possible 
forms of know-how a priori.  New interpretations of past knowledge and experience is 
produced by every constructed memory of these entities. This new interpretation is added to 
the memory system as a new experience and is interpreted later as if it were part of the 
original content of the system. 

 

A constructed memory also interprets the environment according to the current expectation 
of the system.  This expectation is derived from the goal of the system captured within the 
relevant entities selected for memory construction.  The expectation dictates what is to be 
focused upon, and the way the environment is to be interpreted in order for the system to 
perform its task according to its goal. 

 

2.3.1 Recursive Interpretations 
 

Figure 2.3 illustrates the recursive interpretations between the environment and the selected 
experience and/or knowledge used for memory construction. Both the environment and the 
selected entities are interpreted through the lens of the current interaction in this recursive 
fashion.  The recursion behaviour is resolved when the interpretations of the environment or 
selected entities remain the same after a complete cycle of interpretations: interpretation of 
the environment or selected entities followed by an interpretation of the selected entities or 
environment.  The final constructed memory provides a coherent interpretation of the 
environment and of relevant knowledge and experience within a single cohesive structure. 

 
Figure 2.3 Recursive interpretations of a selected memory, experience or knowledge and the environment 
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2.4 Using Situated CBR for Prediction of Corrosion Rates 
 

The situated CBR model will be used to design a system that predicts the atmospheric 
corrosion of building materials as shown in Figure 2.4.  Predicting corrosion rates is a 
complex process which includes reasoning about examples in which corrosion rates are 
known, knowledge of the material properties and the impact of the environment on those 
materials, and an interpretation of the site in which the material is located. 

 

The local conditions of the site in which the material is located are used to determine the 
environmental component of the situated CBR system.  Parameters within this environment 
are used to select previous experiences and/or knowledge from the system for memory 
construction.  A memory is constructed based on a combination and interpretation of 
previous experiences that can be used to predict the atmospheric corrosion rate of a specific 
material on a specific site. 

 
Figure 2.4 Model of situated CBR applied to the prediction of atmospheric corrosion rate 
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A selected experience may be relevant if a corrosion rate has already been calculated in a 
similar situation.  The differences in conditions are examined to see if they are significant to 
warrant additional interpretation and computation.  If a selected previous experience is based 
on experimental data, additional knowledge may be needed to interpret the implications of 
the differences between the experimental situation and the current situation or site 
conditions.   

 

If a relevant experience is not close enough to the current site conditions, the relevant 
knowledge may be used in the form of a holistic model that computes a corrosion rate 
through first principles.  When used as a basis for memory construction, the corrosion rate is 
computed through a series of process models or database lookups of collected field data as 
shown in Figure 2.5.   
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During the course of memory construction, the environmental conditions are reevaluated 
according to the relevant experience used for memory construction.  The relevant experience 
can shift the focus to different aspects of the environment according to the critical features of 
the selected experience and thus introducing new specifications.  New indices to the 
selected experience are created when the experience is found to be applicable to similar 
situations and when the experience is restructured according to the interactions with the 
environment. 

 

 

 
Figure 2.5 Computation of corrosion rate through a series of process models and parameters obtained from 

database lookups 
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3. SITUATED CBR FOR PREDICTION OF CORROSION 
RATES 

 

3.1 Components 
 

The aim of the software tool being developed is to facilitate the accessing of a range of 
sources of information about corrosion and lifetime estimates for building materials.  Thus the 
components are the various data sources (databases) and the case-based reasoning engine 
that will provide the linkage between them and reasoning ability to choose the appropriate 
instances from the various examples. The various sources of information available to the 
project and included in the software tool are displayed in Figure 3.1 and described in the 
following sections. 
Figure 3.1 Heterogeneous database with four different sets of data 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1 Delphi Database 
 

The CRC for Construction Innovation has developed a database of predicted lifetimes for a 
range of metallic building components derived from expert opinion in the project 2002-010-B.  
A detailed description of this project and its outcome can be found in the final report for the 
project. (Cole et al., 2004)    

 

3.1.1.1 The Delphi Technique 
 

A Delphi survey is a structured group interaction process that is directed in ‘rounds’ of 
opinion collection and feedback. Opinion collection is achieved by conducting a series of 
surveys using questionnaires. The result of each previous survey will be the basis of the 
formulation of the questionnaire used in the next round. The Delphi technique is an 
established method for obtaining consensus and has been used in a variety of professional 
settings. 

Professionals such as builders and architects were the primary respondents to the survey. 
They were selected on the basis of their practical experience and theoretical knowledge. 
Building material suppliers were also invited to participate in the survey for their intimate 

Maintenance Data
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knowledge of their specific products. Academics and scientist were also included because it 
is believed that they understand scientific principles in areas that are related to material 
durability, and so their expertise was relevant to the construction of a durability model. The 
survey was conducted via the Web to allow respondents to answer questions at a time 
convenient to them. 
 
The survey included both service life (with and without maintenance) and aesthetic life, and 
time to first maintenance.  It included marine, industrial and benign environments and 
covered both commercial and residential buildings.  
 

3.1.1.2 Classification of Responses 
 

Respondents were asked to gauge the life expectancy of a range of building materials in the 
different categories with answers given in year brackets: <5, 5-10, 10-15, 15-20, 20-30, 30-
50, and >50 years.  Responses were analysed and classified as to the level of agreement 
found between respondents.  A class 1 response had more than 50% of answers in one year 
bracket, a class 2 response had more than 50% in two adjacent year brackets, a class 3 
response had more than 50% of responses in three adjacent year brackets and a class 4 
response showed little agreement.  Examples of class 1 and class 2 responses are shown in 
Figure 3.2 and Figure 3.3. 

 
Figure 3.2 An example of a class 1 response in the Delphi survey 

 
Figure 3.3 An example of a class 2 response in the Delphi survey 
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Class 3 and 4 responses were used as the basis for the second round of questions to try to 
reduce the level of uncertainty.  After assessing all answers and considering the level of 
agreement amongst respondents, the predicted life was stored in the database in two forms: 
the mode and the mean as well as a standard deviation for the mean. Around 85% of all 
answers were fell in class 1 or 2 and were considered acceptable for inclusion in the 
database. 

 

Components covered by the database are a representative subset of building materials 
ranging from nails and ducting through to roofing, window frames and door handles.  Not all 
situations are covered as the components were limited to 30 and only those situations where 
good agreement between the experts was found were included in the database. An example 
of the information stored in the database is given in Appendix I. 

 

3.1.1.3 Validation of the Delphi Database 
 

The final database was examined in three ways to determine its accuracy and reliability.  
These were: 

• analysis for internal consistency of the data (eg. would expect similar results from 
residential and commercial buildings), 

• analysis for consistency with expected trends based on knowledge of materials 
performance (eg. stainless steel should last longer than galvanised steel) and 
environmental severity (eg. a roof in a benign location should last longer than one in a 
marine location), and 

• correlation with existing databases on component performance. 

In all of these comparisons, the Delphi survey data showed good agreement. 

 

3.1.2 Queensland Department of Housing - Maintenance Database 
 

CSIRO has, in conjunction with the Queensland Department of Housing (outside this 
project), analysed over 10,000 records with regards to significant maintenance. A sample of 
the data is presented in Appendix II. In Table 3.1 a summary of the average period to roof 
replacement or significant repair is given for domestic houses in southern Queensland. 

 
Table 3.1 Summary of the average period to roof replacement or significant repair for domestic houses in 

Southern Queensland 
Environment Mean (Years) SD (Years) 

Marine 16 5 

Benign 41 4 

 

3.1.3  Holistic Model 
 

Through many years of research, CSIRO has developed a holistic model for corrosion which 
is based on an understanding of the basic corrosion processes ranging in scale from atomic 
electrochemical reactions to the macro scale of continental environmental factors (Figure 
3.4). 



  

  14

Figure 3.4 A representation of the many factors considered in the holistic model for corrosion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The overall model consists of three broad groups of modules: microclimate models, 
material/environment interactions and damage or corrosion models.  These are illustrated in 
Figure 3.5. 

 
Figure 3.5 Structure of the modules of the holistic model 

 

 

 

 

 

 

 

 

 

 

 

 

The model starts from an understanding of climatic conditions pertinent to corrosion that 
include moisture, prevailing winds, salinity and pollution.  This has been used to produce a 
Geographical Information System which models sources and distribution patterns of natural 
and man-made pollutants across Australia and combines this knowledge with an 
understanding of the physical responses of surfaces.  Corrosion maps of Australia have been 
created from this model.  This is illustrated for zinc in Figure 3.6. 
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Figure 3.6 Levels of corrosion of zinc due to atmospheric pollutants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The holistic model forms another source of information for predicting the lifetime of metallic 
building components.  Once the geographical position is specified, salt deposition levels can 
be determined.  Modifications can be made according to the type and positioning of the 
element (see case definition below) and how this affects the climatic factors.  

 

It may also be necessary in some applications to carry out further modifications to the 
algorithms of the holistic model to allow more accurate calculations to be made.  This was 
done for the gutter application presented in this report (and discussed in Section 5.2).  

 

3.2 Definition of Cases 
 

Intrinsic to the use of case-base reasoning is the definition of the attributes for cases for a 
particular application.  Cases need to be defined such that the CBR engine can search the 
casebase and other databases for examples relevant to the current case. In the application 
for lifetime prediction, parameters relevant to component degradation need to be considered 
and defined. 

 

For metallic building components the important parameters for determining the corrosion rate 
include the component type, material type and the environmental conditions.  A detailed 
review of corrosion degradation models for metallic components used in building materials 
was carried out and is summarised in CRC Report 2002-059-B No. 5 “Corrosion Degradation 
Models for Metallic Building Components”. 

 

Materials in common use include: 

• steel and steel alloys (bare and painted) 
• zinc and zinc alloys (bare and painted) 
• aluminium alloys. 
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The parameters identified to control corrosion degradation rates are summarised as: 

• Time of wetness 
• Chloride concentration 
• Sulfur dioxide concentration (or deposition of other sulfur impurities) 
• Ozone concentration 
• Temperature 
• pH of precipitation 
• Volume of precipitation 
• Deposition of dust 
• Nitrogen oxide (NOx) concentration 

 

These parameters are all strongly dependent on geographic location, with climate and local 
industry level of paramount importance.  Once the macroclimate has been identified then the 
rate of corrosion will also depend on placement within the building eg internal or external, if 
external then whether sheltered or exposed etc.  A final parameter of importance is whether 
the building element is subject to regular maintenance. Maintenance includes cleaning and 
repainting but does not extend to replacement of the building component. 

 

3.2.1 Characterisation of Environment  
 

For the purpose of corrosion the environment needs to be characterized in terms of the 
pollutant, RH and type of rainfall.   This is summarised in Table 3.2. 
 

Table 3.2 Environment classifications 
Pollutant  RH  Rainfall  

Severe Marine  Very Humid  Frequent and Heavy  

Marine  Humid  Frequent and Light  

Severe Industrial  Standard Standard and Heavy 

Moderate Industrial Standard Standard and Light  

Industrial  Dry  Infrequent and Heavy  

Benign  Very Dry  Infrequent and Light  

 

In addition, for the severe marine, marine, severe industrial and industrial classifications the 
neighbourhood must also be considered with the following classifications based on how the 
surrounding land use affects pollutant transport: 

• Grassland, 

• Urban, 

• Forest, 

• High rise 
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3.2.2 Detailed Building Characterisation  
 

3.2.2.1 Location in Building 
 

Building structures have been considered with regard to the situations that will affect the 
amount of aerosol deposition of pollutants.  Thus building locations have been divided into 
twelve types and these are listed in Table 3.3. 
 
Table 3.3 Description of building elements for case definition 
Case Description 

Open Rooftop The top of any surface that bridges between the tops of two or more walls and has an average 
slope of 45 degrees or less.  This includes flat, hip, gable, monoslope, multispan, sawtooth, 
arched mansard and conical roofs.  It includes projections and indentations of 0.3 metres or 
less.  The roof is to have a minimum dimension of at least two metres. 

Open Wall Any flat non-sheltered surface with a slope of less than 45 degrees off vertical including any 
projections or indentations that depart less than one metre from planarity.  The wall is to have 
minimum dimension of at least one metre.  Also includes bridge piers.  

Sheltered Wall Any area that is covered with a covering that stops all direct sunlight when the sun is less than 
45 degrees from the zenith 

Edges and 
External corners 
of walls or roofs 

Comprises the area within one metre of any external corner.  This excludes re-entrant corners, 
corners on isolated steelwork, and corners on some roofs (such as saw-tooth roofs).  The 
angle of the external corner is to be between 0 and 135 degrees.  It includes corners of bulk 
objects projecting from roofs. 

Dirt 
Accumulation 
Zone 

Any area in which water, dirt, leaves or dust can accumulate.  This surface usually has an 
angle of less than 3 degrees to the horizontal but as corrosion develops it can grow to 
encompass much steeper angles 

Roof cavity Any object lining or found within the cavity between the ceiling and roof of a building. 

Wall cavity Any object lining or found within the cavity between the inner and outer walls of a building.  
Also includes cavities in multistorey buildings between the false ceiling and the floor above. 

Moisture 
Accumulation 
Points in Wall 
Cavities 

e.g bottom Plates 

Underfloor 
cavity 

Any object lining or found within the space under the ground floor of a building.  Excludes any 
such space that is artificially heated or ventilated. 

Semi-enclosed 
space 

Seem most frequently as a lower floor in a multistorey car park.  Defined as any object in a 
space with at least one large opening to the atmosphere.  Excludes any such space that is 
artificially heated or ventilated. 

Enclosed room Includes rooms in domestic residences, commercial establishments, factories and 
warehouses, and elsewhere.  Estimating the corrosion in an enclosed room requires further 
information on heating, artificial ventilation, and local sources of aerosols, gases and moisture. 

 
 

3.2.2.2 Cleaning 
 

Corrosion is also affected by how much of any pollutant deposition can be removed by the 
natural cleaning of rain, condensation and wind.  Classifications with regard to cleaning 
levels are listed in Table 3.4. 
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Table 3.4 Definitions of cleaning 
Case Description 

Open Rooftop Any area exposed to sun and rain with a slope between 3 degrees and 45 degrees (but see 
(6) below 

Open Wall Any area that is not sheltered with a slope of less than 45 degrees off vertical. 

Sheltered  Any area that is covered with a covering that stops all direct sunlight when the sun is less than 
45 degrees from the zenith. 

Crevice Any gap small enough for capillary attraction to drag water upwards 

Drop-off Zone Any area from which water will drop.  This typically occurs under the edges of overhangs 

Dirt 
Accumulation 
zone 

Any area in which water, dirt, leaves or dust can accumulate.  This surface usually has an 
angle of less than 3 degrees to the horizontal but as corrosion develops it can grow to 
encompass much steeper angles. 

 

3.2.2.3 Maintenance 
 

If a metallic building element is subject to a regular maintenance schedule that will pick up 
and deal appropriately with the first signs of corrosion, then it is likely to last longer than one 
that is not maintained in the same situation.  Thus maintenance (or lack of) is considered an 
important parameter for definition of a case.  It is particularly an issue for building 
components, such as gutters, where dirt and debris can collect over time and affect drainage 
and the rate of drying after rainfall or condensation. 

 

3.3 Defining Case Similarity 
 

When the liftetime prediction tool is presented with a new case, it will search through the 
casebase library to find similar cases that have already been constructed.  Whilst it is 
possible that a stored case may exist that matches all the case parameters exactly, it is more 
likely that some variation will occur.  Thus it is necessary to have some method of defining 
how similar the new case is to each of those stored in the casebase and extracting the cases 
considered most ‘similar’. 

 

Similarity between cases must be based on similarity in the attributes that affect the 
corrosion rate of the building materials under consideration ie. 

• Geographic location 

• Location in Building 

• Maintenance, and  

• Cleaning 

 

Overall, a similarity number (S) will be defined, where: 

 S = Ms x Cs x Ls x Gs                                                                                … Eqn 3.1 

Where: 

 Ms is a measure of similarity in Maintenance, the Maintenance similarity index, 

 Cs is a measure of similarity in Cleaning, the Cleaning similarity index 
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 Ls is a measure of similarity in Location in Building, the Location similarity index and 

 Gs is a measure of similarity in geographic location, the geographic similarity index. 

If two parameters match exactly, the similarity index will equal 1.  If two parameters are 
different but have similar effects on the likely corrosion rate, then the similarity index will be 
close to 1 (0.8-0.9).  The lower the similarity index, then the greater the difference between 
the two situations in terms of likely corrosion rates.  Since the individual similarity indices are 
multiplied together to provide the overall similarity index S, variations in individual indices 
result in a cumulative lowering of S.  The cut-off point for S at which a case is not retrieved 
from the casebase can be defined to broaden or narrow the cases chosen. 

 

Values for the similarity indices have been defined and are discussed in the following 
sections.  At this stage of the project development, not all cases have been considered, so 
only a subset (relevant to the gutter application) are presented. 
 

3.3.1 Maintenance 
 

At this stage there are only two values for Maintenance: maintained or not maintained. For 
comparison between cases, the values in Table 3.5 are assigned for Ms, the maintenance 
similarity parameter. 
 

Table 3.5 Values defined for Maintenance Similarity Index Ms 
                          New Case 

Old case 
Maintained (M1) Not Maintained (M0) 

Maintained (M1) 1 0.7 

Not Maintained (M0) 0.7 1 

 

3.3.2 Cleaning 
 

The most important aspect for cleaning is considered to be whether or not the building 
component is in a dirt accumulation zone.  If two cases do not match in this aspect then Cs = 
0.  If they do match then Cs is assigned values according to Table 3.6 and Table 3.7, 
depending on whether maintenance is available or not. 

 

Table 3.6 Values of Cs for non-dirt accumulation zone 
                          New Case 

Old case 
Maintained (M1) Not Maintained (M0) 

Maintained (M1) 1 0.9 

Not Maintained (M0) 0.9 1 

 
Table 3.7 Values for Cs in dirt accumulation zone 
                          New Case 

Old case 
Maintained (M1) Not Maintained (M0) 

Maintained (M1) 1 0.7 

Not Maintained (M0) 0.7 1 

 



  

  20

3.3.3 Location in Building (Ls) 
 

For the building components defined in Section 3.2.2.1 the similarity index Ls is defined in 
Table 3.8.  

 
Table 3.8 Values of Ls for Building Components 
 Building Location - New case  

Old 
case  

1 2 3 4 5 6 7 8 9 10 11 12 

1 1 0.8 0.7 0.7  0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.5 

2 0.8 1 0.8 0.7 0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.5 

3 0.7 0.8 1 0.8 0.6 0.5 0.5 0.6 0.6 0.7 0.8 0.5 

4 0.7 0.7 0.8 1 0.7 0.5 0.5 0.6 0.6 0.7 0.8 0.5 

5 0.7 0.6 0.6 0.7 1 0.5 0.5 0.6 0.6 0.8 0.7 0.5 

6 0.5 0.5 0.5 0.5 0.5 1 0.9 0.8 0.7 0.5 0.5 0.8 

7 0.5 0.5 0.5 0.5 0.5 0.9 1 0.9 0.8 0.6 0.6 0.7 

8 0.6 0.6 0.6 0.6 0.6 0.8 0.9 1 0.9 0.7 0.7 0.6 

9 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.9 1 0.8 0.8 0.5 

10 0.7 0.7 0.7 0.7 0.8 0.5 0.6 0.7 0.8 1 0.7 0.5 

11 0.7 0.7 0.8 0.8 0.7 0.5 0.6 0.7 0.8 0.7 1 0.6 

12 0.5 0.5 0.5 0.5 0.5 0.8 0.7 0.6 0.5 0.5 0.6 1 

 

3.3.4 Geographic Location (Gs) 
 

The most important aspect for geographic location is considered to be whether or not the 
specified case is in a marine environment or not (benign, salinity < 15 mg/m2.day).  If two 
cases do not match in this aspect then Gs = 0.   

 

If two cases being compared are both non-marine then: 

Gs = 1 if they are within 20 km of each other, and  

Gs = 0.9 if they are within 50 km of each other. 

 

For two marine cases or non-marine cases > 50 km apart then Gs is assigned values 
according to: 

                    Gs = Ws * Ms                                                                                         …Eqn 3.2 

 

where Ws is the time of wetness similarity factor (defined inTable 3.9) and Ms is the marine 
salinity factor (defined in Table 3.10). 
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Table 3.9 Values for Ws (Time of Wetness similarity index) 
 New case-TOW (%) 

Old case-TOW(%)  0 to 19 20-39 40-59 60-79 80-100 

0 to 19  1 0.8 0.7 0.6 0.5 

20 to 39  0.8 1 0.8 0.7 0.6 

40 to 59 0.7 0.8 1 0.8 0.7 

60-79 0.6 0.7 0.8 1 0.8 

80-100 0.5 0.6 0.7 0.8 1 

  
 
Table 3.10 Values for Ms (marine salinity similarity index) 
 New case-Salinity mg/m2.day 

Old case- 
Salinity 
mg/m2.day  

<5 5 – 15  16-40 41-100 101-300 >300 

<5  1 0.8 0.7 0.6 0.5 0.4 

5 -15  0.8 1 0.8 0.7 0.6 0.5 

16 40 0.7 0.8 1 0.8 0.7 0.6 

41 -100 0.6 0.7 0.8 1 0.8 0.7 

101 - 300 0.5 0.6 0.7 0.8 1 0.8 

> 300 0.4 0.5 0.6 0.7 0.8 1 

 

3.3.4.1 Computation of Distance between Two Points on the Earth’s Surface 
 

Due to the near spherical shape of the Earth (an oblique spheroid), spherical geometry and 
trigonometric mathematical functions are required to calculate an accurate distance between 
two points on the surface of the earth.  The equations are given in Appendix III. 
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4. DESIGN AND IMPLEMENTATION OF SITUATED CBR 
FOR CORROSION PREDICTION 

 

4.1 Specification and Design 

4.1.1 Definition of Problem 
 

The aim of the project is to improve the accuracy of component life prediction through the 
use of a situated CBR system that operates upon its knowledge and experience.  The holistic 
model will be used to provide the required knowledge for computing the life building 
components through first principles.  A number of databases of component life derived from 
expert opinion, research and maintenance data will provide a repository of experiences on 
component life predictions of certain components under specific conditions.  A case base of 
previously constructed memory will provide a repository of experiences that predict 
component life based on combining the results from the holistic model and databases. 

 

The project has focused on the creation of the software architecture for component life 
prediction based on situated CBR.  The architecture provides a structure for utilising existing 
knowledge and experiences to reason about the current situation (interpretation) and 
construct a solution to component life prediction (construction). 

 

The software has been designed with consideration for the two applications specified by the 
project’s industry partners: 

• Gutters in Queensland schools for the Queensland Department of Public Works, and 

• Bridges in Queensland roads for the Queensland Department of Main Roads. 

 

The design of this situated case-based reasoning framework is outlined in the next sections, 
followed by details of its implementation. 

 

4.1.2 Usage Scenario 
 

Figure 4.1 illustrates the overall usage scenario for the proposed system by an external user. 
The way the system is used is outlined. 
Figure 4.1 Use case outlining the overall usage of the system 

User

Casebase

Database

HolisticModel

Calculate Component 
Life
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The user of the system supplies the following information (items in parenthesis indicate their 
possible values): 

• Location of Site (coordinates pair on longitude and latitude in decimal degrees) 
• Type of Component (roof / gutter) 
• Material of Component (galvanized steel / zincalume / Colorbond) 
• Maintenance State (maintained / not maintained) 
• Cleaning Condition (dirt can collect / dirt cannot collect) 
• Cleaning State (cleaned / not cleaned) 
• Location of Component within Building (list of locations) 
• Condition of Geographic Location (marine application / non marine application) 

 

The list of locations consists of:  

• Open Rooftop 
• Open Wall 
• Sheltered Wall  
• Edges and External Corners of Walls or Roofs  
• Dirt Accumulation Zone 
• Roof Cavity 
• Wall Cavity 
• Moisture Accumulation Points in Wall Cavities  
• Underfloor Cavity 
• Underfloor Positions in Contact with Earth  
• Semi-Enclosed Space 
• Enclosed Room 

Based on the input supplied, the situated CBR system computes a predicted component life 
value from its Casebase, Database and HolisticModel. The Casebase is a repository of previous 
prediction episodes and the HolisticModel is a set of procedures that calculate the component 
life of building elements. Database is a placeholder that represents different databases that 
contain component life information from different sources. 

 

4.1.3 System Scenario  
 

The usage scenario in Figure 4.1 is mapped onto a system scenario illustrated in Figure 4.2. 
This (system) scenario outlines the way in which a situated CBR system handles the problem 
presented in the use case of Figure 4.1. Table 4.1 provides details to this system scenario. 
Figure 4.2 Details of Calculate Component Life use case 
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Table 4.1 Details of system scenario 
Descriptions This scenario illustrates different processes within the situated CBR system used 

to predict component life. 

Actors User, Casebase, Databases (delphi and field (maintenance) databases) and 
Holistic Model. 

Preconditions System initialized with the required data for computing similarity indices. 

Scenario Text Activity: 

User enters values for the following parameters to start the creation of a new 
case: 

Location of Site 

Type of Component 

Material of Component 

Maintenance State 

Cleaning Condition 

Cleaning State 

Location of Component within Building 

Condition of Geographic Location 

Interpretation based on initial parameter values: 

The casebase, databases and holistic model are accessed to generate 
alternatives (subcases) for finalizing the inputs. 

An inference engine is employed to process these alternatives to produce this 
finalization. 

Construction based on finalized parameter values: 

The finalized inputs are used again to generate another set of alternatives from 
the casebase, databases and holistic model. 

An inference engine is used to combine these alternatives to produce a complete 
solution for component life prediction. 

The current problem solving episodic is stored as a new case. 

 

Alternative Courses None 

Extends None 

User Interfaces None 

Constraints None 

Questions None 

Notes Both inference engines for interpretation and construction need not be 
implemented but provisions must be made for their incorporation later. 

Author Pak-San Liew 

Source Document System Specification Report (ver. 1.0) 

 

4.1.4 Context Diagram 
 

To define the scope of the situated CBR system, a context diagram and usage scenario are 
employed.  Figure 4.3 illustrates the boundaries of the situated CBR system in the form of a 
context diagram. . The Database box denotes different physical databases of component life 
information obtained by different means. For the current system, two databases: one based 
on a Delphi study of experts’ opinions (Delphi database) and one based on field 
(maintenance) data (labeled as field (maintenance) database in this project), are considered. 
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Figure 4.3 Context diagram for the situated CBR system  
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The development of the system entails the creation of the following: 

• interfaces to different database; 
• interface to a casebase to store previous problem solving episode; 
• a software framework to contain the above and  
• different entry points within the framework to allow the incorporation of different 

inference engines for interpretation and construction as defined in situated CBR. 

 

4.1.5 Software Environment 
 

The situated CBR system is expected to operate within the Windows XP environment 
utilizing Java version 1.4. 

 

4.1.6 System Architecture 
 
The basic goal of this project is to develop a software framework for component life 
prediction based on the use of knowledge and past experiences according to the model of 
situated CBR (Liew and Maher 2004). The architecture of a situated CBR system is the main 
focus. This architecture provides a structure that defines the infrastructure that permits 
situated case-based reasoning. What software components are involved and their 
interconnections are emphasized here. Development of the internal workings of different 
components within the architecture that are dictated by the domain of corrosion engineering 
is not within the scope of this project. 

 

To achieve the architectural goal, a prototype system is created to define a framework for 
situated CBR within a software system. The architecture of this system: 

• provides the infrastructure for reasoning about the current situation according to its 
knowledge and experiences during interpretation; and 
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• provides the infrastructure for reasoning about the ways solutions from casebase, the 
holistic model and various database can be combined to produce a complete solution 

 

4.1.6.1 Software Architecture 
 

Figure 4.4 illustrates the overall software architecture of the prototype system. All codes 
reside within a single machine and no distributed computations are considered in the design 
of the system.  

Software wrappers are used to insulate data storage technologies from the situated CBR 
system. A wrapper encapsulates the details of an underlying persistence technology through 
an interface. This interface provides a set of common access methods to the required data 
across different persistence technologies. Components of the situated CBR system that 
require data storage and retrieval functionalities are only required to conform to the method 
signatures of the relevant interface without being concerned about the technology used. 
When the technology is changed in subsequent development of the system, changes to the 
situated CBR system are isolated to the backend of the wrapper that interacts directly with 
the new technology. Codes within the situated CBR that utilizes the wrapper are not affected. 
 
Figure 4.4 Software architecture of the situated CBR system  
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4.1.6.2 Solution Approaches for Interpretation and Memory Construction 
 
Error! Reference source not found. illustrates the key components that will implement the 
interpretation and construction of memory for the situated CBR system. During interpretation 
(Figure 4.6), the interpreter uses the input values from the user to retrieval alternatives from 
the casebase, databases of component life and holistic model to finalize the input values 
entered by the user. For the database of experience, two databases are considered 
currently: a Delphi database of experts’ opinions and a field (maintenance) database of 
measurements. During construction (Figure 4.7), alternatives are retrieved from the 
casebase, databases of component life and holistic model in a similar way according to the 
finalized input to provide the basis for constructing the solution to the current prediction 
problem. 
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Figure 4.5 Key software components for interpretation and memory construction 
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Figure 4.6 Interpretation cycle 

User Input

Casebase

Delphi
Database

Other
Database

Similarity Cases

Similar Data / Computations 

alternatives

alternatives

alternatives

alternatives

(subcases)

(subcases)

Final User Input

Holistic
Model

Inference Engine

domain heuristics

domain heuristics

 
Figure 4.7 Construction cycle y
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4.1.6.2.1 Contents of a Case 
 

The end result of using the system is a new case. This case is made up of the following: 

• initial user input; 
• finalized user input; 
• alternatives (subcases) used in construction consisting of: similar cases from the 

casebase, similar data from the Delphi and field databases, as well as similar 
computations from the holistic model; 

• prediction component life; 
• time stamp; and 
• an inference module indicating how the prediction value is computed. 

Information from interpretation is not stored. 

 

4.1.6.2.2 Generation of Alternatives with Cases from the Casebase 
 
In terms of information from the casebase, associated cases of previous prediction episodes 
are retrieved so that previous problem solving experience can be utilized. A retrieved case is 
defined as similar to the current situation when its similarity index is computed to be >0.5. 
This value is set arbitrarily for the current development and can be fine-tuned later.  

 

For the Queensland schools gutter application the similarity parameters have been defined. 
In situations where the cleaning condition of the user input and the retrieved case are different 
(one with gunk can collect and the other with gunk cannot collect), the cleaning factor (Cs) is set 
to zero so that the retrieved case will not be used. 

 

In situations where the conditions of geographic-location condition of the user input and the 
retrieved case are different (one with marine application and the other with non marine 
application, the geographic-location factor, Gs, is set to zero so that the retrieved case will not 
be used. 

 

For the geographic-location factor, Gs, with non marine application condition, if the location that 
was entered by the user and the retrieved case are within 20 km of each other, Gs is set to 
the value of 1.0. If the two locations are between 20 to 50km, Gs is set to 0.9. Any distance 
greater than 50km sets Gs to 0.0. 

 

4.1.6.2.3 Generation of Alternatives with Data from Databases 
 

Experiences in terms of datum from the databases (Delphi and field) that are retrieved are 
based on the use of retrieval key values as entered by the user and alternative values that 
certain keys can take. For example, if the user entered a value of Galvanized Steel in the 
material field of the user input, this value for material is used as part of a series of keys to 
retrieve component life data from the Delphi and field (maintenance) databases. To retrieve 
alternative component life, the system changes the material field to Zincalume (while 
maintaining the same values for other fields) to retrieve more data from these databases.  
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Currently, only the material field of the user input is allowed to change and the system cycles 
through all material in the databases to generate alternatives. Expansions in terms of 
additional materials can be added to the wrappers of the individual data source. 

 

4.1.6.2.4 Generation of Alternatives with Data from the Holistic Model 
 
Alternatives from the holistic model are generated in a way similar to that for databases: all 
available materials are used as alternative input to generate different component life data.  

 

4.1.6.2.5 Interpretation from Alternatives 
 

The interpretation process is instantiated as a finalization of input parameter values from the 
alternatives generated from above. These alternatives are modelled within the system as 
subcases that provide optional values for variable input parameters.  

 

In the current development, the use of different materials to retrieve data provides the user 
with alternatives in terms of using different materials for the same situation. These 
alternatives provide the basis for reframing the problem specification by modifying the initial 
input values entered by the user to finalize the input values.  

 

An inference engine is employed for the finalization process. The intelligence for this process 
is currently implemented by displaying the alternatives and prompting the user for a solution.  

 

4.1.6.2.6 Memory Construction from Alternatives 
 

Based on the finalized input data, alternatives for memory construction are generated from 
the casebase, databases and holistic model in the same way as in interpretation. Another 
inference engine is employed to combine these results and construct a complete solution for 
predicting component life. 

 

As in the case of interpretation, the inference engine is not implemented in the current 
system but an entry point within the system’s architecture has been provided. The 
intelligence for construction is currently implemented by displaying the alternatives and 
prompting the user for a solution. 

 

4.1.6.2.7 Hard-Coding of Interpretation and Construction 
 

To emulate the operations of the inference engines employed during interpretation and 
construction, dummy functions are used as placeholders for function calls to these engines. 
During interpretation, the alternatives from the casebase, databases and holistic models are 
displayed as subcases and the initial input values are duplicated to create the finalized 
values. During memory construction, the alternatives from the casebase, databases and 
holistic models (based on the hard-coded input values from interpretation) are also displayed 
as subcases and the final prediction value is set to 100.0. The module parameter that indicates 
how the reasoning was done is set to a value PLACEHOLDER. 
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4.1.6.3 Solution Approach for Calculating Similarity Index 
 

Comparison of the current case with information (experience) stored in the various 
databases is integral to the case-based reasoning program.  Therefore a method must be 
found for quantifying the similarity index of different cases. 

 

Information for the computation of similarity matrix (See Section 3.3) is encoded within an 
ASCII file (Figure 4.8). During initialisation, this file is read into the system to allow similarity 
indices to be calculated. 

 

The use of an ASCII file to represent the tabulated data in the similarity tables is to allow the 
easy modification of their values in the future. 

 

4.1.6.4 Rationale for Design Decisions 
 

Design decisions that have consequence on the behaviours of the system are outlined in the 
following table (Table 4.2). 

 
Table 4.2 Design decisions and their rationale 

Design Decision Rationale 
If there is no data available within a database 
based on: (a) the set of original input parameter 
values or (b) a modified version of these values 
for generating alternatives during interpretation 
and construction, the alternative generated will 
have a computed value of zero to indicate this 
situation. 

The user is informed about the fact the database do not 
have data for the original or modified set of input 
values. 

 

4.1.6.5 Extension and Modifications Points 
 

The following components of the situated CBR system are modification and entry points for 
extending the functionalities of the system: 

• wrapper for casebase, database and holistic model; 
• interpreter access to an inference engine; 
• constructor access to an inference engine; 
• system access to different tabulated data for similarity computation; and 
• system access to different information for similarity computation. 

The wrapper for casebase and database permits system modifications and extensions in 
terms of: 

• using alternative persistence technologies such as a flat file system, rational or object 
databases for data storage and retrieval; and 

• incorporating new mechanisms for generating alternatives during interpretation and 
construction. 
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Figure 4.8 ASCII file coding of the data required for computing similarity index 

PARAMETER_START 
Name = maintenance state 
Condition = NULL 
 Variable = maintained 
 Variable = not maintained 
 Table 

1.0 0.7 
0.7 1.0 

PARAMETER_END 
 
 

PARAMETER_START 
Name = cleaning 
    Condition = gunk cannot collect 
 Variable = cleaned 
 Variable = not cleaned 
 Table 

1.0 0.9 
0.9 1.0 

PARAMETER_END 
 
 

PARAMETER_START 
Name = cleaning 
Condition = gunk can collect 

Variable = cleaned 
 Variable = not cleaned 
 Table 

1.0 0.7 
0.7 1.0 

PARAMETER_END 
 
 

PARAMETER_START 
Name = location in building 
Condition = NULL 
 Variable = open rooftop 
 Variable = open wall 
 Variable = sheltered wall  
 Variable = edges and external corners of walls or roofs  
 Variable = dirt accumulation zone 
 Variable = roof cavity 
 Variable = wall cavity 
 Variable = moisture accumulation points in wall cavities  
 Variable = underfloor cavity 
 Variable = underfloor positions in contact with earth  
 Variable = semi enclosed space 
 Variable = enclosed room 
 Table 

1.0 0.8 0.7 0.7  0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.5 
0.8 1.0 0.8 0.7 0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.5 
0.7 0.8 1.0 0.8 0.6 0.5 0.5 0.6 0.6 0.7 0.8 0.5 
0.7 0.7 0.8 1.0 0.7 0.5 0.5 0.6 0.6 0.7 0.8 0.5 
0.7 0.6 0.6 0.7 1.0 0.5 0.5 0.6 0.6 0.8 0.7 0.5 
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0.5 0.5 0.5 0.5 0.5 1.0 0.9 0.8 0.7 0.5 0.5 0.8 
0.5 0.5 0.5 0.5 0.5 0.9 1.0 0.9 0.8 0.6 0.6 0.7 
0.6 0.6 0.6 0.6 0.6 0.8 0.9 1.0 0.9 0.7 0.7 0.6 
0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.9 1.0 0.8 0.8 0.5 
0.7 0.7 0.7 0.7 0.8 0.5 0.6 0.7 0.8 1.0 0.7 0.5 
0.7 0.7 0.8 0.8 0.7 0.5 0.6 0.7 0.8 0.7 1.0 0.6 
0.5 0.5 0.5 0.5 0.5 0.8 0.7 0.6 0.5 0.5 0.6 1.0 

PARAMETER_END 
 
 

PARAMETER_START 
Name = time of wetness 
Condition = marine application 

Variable = 0 to 19 
 Variable = 20 to 39 
 Variable = 40 to 59 
 Variable = 60 to 79 
 Variable = 80 to 100 

Table 
1.0 0.8 0.7 0.6 0.5 
0.8 1.0 0.8 0.7 0.6 
0.7 0.8 1.0 0.8 0.7 
0.6 0.7 0.8 1.0 0.8 
0.5 0.6 0.7 0.8 1.0 

PARAMETER_END 
 
 

PARAMETER_START 
Name = salinity factor 
Condition = marine application 
         Variable = 0 to 4 
 Variable = 5 to 15 
 Variable = 16 to 40 
 Variable = 41 to 100 
 Variable = 101 to 300 
 Variable = 300 to infinity 
         Table 

1.0 0.8 0.7 0.6 0.5 0.4 
0.8 1.0 0.8 0.7 0.6 0.5 
0.7 0.8 1.0 0.8 0.7 0.6 
0.6 0.7 0.8 1.0 0.8 0.7 
0.5 0.6 0.7 0.8 1.0 0.8 
0.4 0.5 0.6 0.7 0.8 1.0 

PARAMETER_END 

(Figure 4.8 cont.) 

 

Expansions in terms of new mechanisms for generating alternatives include the addition of 
new parameter values for variable retrieval keys (such as more material types) and the 
incorporation of new variable retrieval keys (such as allowing component type to change on 
top of material). 

The wrapper for the holistic model permits system modifications and extensions in terms of: 

• using updated versions of the holistic model; and  
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• incorporating new mechanisms for generating alternatives during interpretation and 
construction (as in the case of casebase and databases). 

 

Inference engines based on Artificial Intelligence (AI) technologies that model the required 
domain heuristics during interpretation and construction are accessed through the interpreter 
and constructor respectively. Currently, dummy function calls are used to emulate these 
accesses. 

 

The information required for computing similarity is encapsulated within a component that 
reads off the required data from an ASCII file. For the current ASCII file, only modifications of 
different tabulated values within the file are permitted. For all other structural changes, new 
mechanisms for getting the required data need to be coded. The interface provided by the 
current design isolates these changes to the underlying codes that deal directly with the data. 
Other components of the situated CBR system that needs the information for similarity 
computation are not altered with these changes. 

 

4.1.6.5 Secondary Issues 
 

The following are taken as secondary issues during the development of the system: 

• user interfaces 
• extensive error handling; and  
• performance and efficiency. 

The structure of the software framework was seen as the main focus of the project, and 
simple user interfaces were developed later to facilitate the development of the applications. 
No provisions are also made for handling errors, performance and efficiency issues for the 
same reason. 

 

4.1.7 Software Modules 
 

The situated CBR system is decomposed into the following: 

• user input module; 
• display module; 
• interpretation module; 
• construction module; 
• inference module 
• similarity computation module;  
• data source module and 
• wrappers for data source. 

Figure 4.9 presents the overall picture of how these modules relate to each other as part of 
the whole system. The responsibility of each module is outlined in Table 4.3. 
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Figure 4.9 Relationships between different modules of the situated CBR system 
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Table 4.3 Software modules in the situated CBR system 

Module Responsibility 
User Input To represent the set of user input parameters. 
Display To display the output of different processes. 
Interpretation To provide the required interpretative function for situated CBR. 
Construction To provide the required constructive function for situated CBR. 
Inference To represent domain heuristics for finalizing user input and constructing a 

solution from a series of alternatives. 
To provide an entry point for incorporating different AI engines for 
inferencing. 

Similarity Computation To calculate the similarity between the input parameters and previous 
problem solving episodes. 
To provide an interface to different ways to calculate similarity indices so 
that changes are isolated when different methods are used. 

Data Source Module To provide the required data for interpretation and construction of 
solutions. 

Wrappers for Data Source To provide an interface to various data sources so that changes are 
isolated when persistence technologies changes. 
To an entry point for incorporating different mechanisms that allow 
alternatives to be retrieved from the data sources based on variable keys. 

 

4.2 Implementation 

4.2.1 Class Diagram 
 

Figure 4.10 outlines the key classes of the situated CBR system.  Details of the classes are 
described in Appendix IV. 
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Figure 4.10 Key classes in the implementation of the situated CBR system. 
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4.2.2 Interactions 
 

Interactions between different classes for a typical memory construction through interaction 
and construction are illustrated in Figure 4.11. 

 

4.2.3 Extension and Modification Points 
 

The case-based reasoning engine has been coded to allow for subsequent extension and 
modification.  Table 4.4 details the various modification points with the relevant classes for 
future system changes. 
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Figure 4.11 Interactions between classes of the situated CBR system for a typical memory construction process 
 

constructor : ComponentLife
Constructor

dis : ComponentLifeConsoleDisplayinterpreter : ComponentLife
Interpreter

theCase : ComponentLifeCasetimeStamp : DateuserInput : ComponentLifeUser
Input

fdb : ComponentLifeFieldDatabasedsurvey : ComponentLifeDelphi
Database

hmodel : ComponentLifeHolistic
Model

theCasebase : ComponentLifeCase
Base

tableInput : ComponentLifeTable
Input

dataSources : Vector : ComponentLifeSituatedCBR

2 : \new\ 

1 : \new ("userInputCFG.txt")\ 

3 : \init\ 

4 : \init\ 

5 : \init\ 

6 : \init\ 

7 : \add(hmodel, dsurvey,fdb)\ 

8 : \new\ 

9 : \new\ 

10 : \new\ 

11 : \setInitialInputData\ 

12 : \new\ 

13 : \getFinalUserInput\ 

22 : \setFinalUserInput\ 

14 : \getAlternatives\ 

15 : \getAlternatives\ 

16 : \getAlternatives\ 

17 : \getAlternatives\ 

18 : \getAlternatives\ 

19 : \activateInferenceEngine\ 

20 : \displayAlternatives\ 

21 : \getConsoleDisplayString\ 

23 : \new\ 

24 : \constructCase\ 
25 : \getAlternatives\ 

26 : \getAlternatives\ 

27 : \getAlternatives\ 

28 : \getAlternatives\ 

29 : \getAlternatives\ 

30 : \activateInferenceEngine\ 

31 : \displayAlternatives\ 

32 : \getConsoleDisplayString\ 

33 : \addCase(theCase)\ 
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Table 4.4 Extension and modifications points within source codes 

Extension / Modification Related Class.Methods / File Remarks 
Adding new materials to generate more alternatives 
from the Holistic model. 

ComponentLifeHolisticModel() 
 

Add the string representations of these material to the field 
ComponentLifeHolisticModel.materials 

Adding new ways to generate alternatives from the 
Holistic model. 

ComponentLifeHolisticModel() 
ComponentLifeHolisticModel.getAlternatives(…) 

In addition to the ways alternatives are generated by cycling 
through different materials, additional codes needs to be 
added to ComponentLifeHolisticModel.getAlternatives(…). 

Adding new materials to generate more alternatives 
from the delphi database. 

ComponentLifeDelphiDatabase () 
 

Add the string representations of these material to the field 
ComponentLifeDelphiDatabase.materials 

Adding new ways to generate alternatives from the 
delphi database. 

ComponentLifeDelphiDatabase () 
ComponentLifeDelphiDatabase.getAlternatives(…) 

In addition to the ways alternatives are generated by cycling 
through different materials, additional codes needs to be 
added to ComponentLifeDelphiDatabase.getAlternatives(…). 

Adding new materials to generate more alternatives 
from the field (maintenance) database. 

ComponentLifeDelphiDatabase () 
 

Add the string representations of these material to the field 
ComponentLifeFieldDatabase.materials 

Adding new ways to generate alternatives from the 
field (maintenance) database. 

ComponentLifeFieldDatabase () 
ComponentLifeFieldDatabase.getAlternatives(…) 

In addition to the ways alternatives are generated by cycling 
through different materials, additional codes needs to be 
added to ComponentLifeFieldDatabase.getAlternatives(…). 

Adding inference engine for interpretation ComponentLifeInterpreter.activateInferenceEngine(…) Call out to the inference engine from the body of this function. 
Adding inference engine for construction ComponentLifeConstructor.activateInferenceEngine(…) Call out to the inference engine from the body of this function. 

Modifying  tabulated data for similarity index 
computation 

userInputCFG.txt Change the value of the data under the “Table” heading of the 
required parameter. 

Different ways to compute similarity index ComponentLifeTableInput The entire class and all related classes need to be changed. 
Using different persistence technologies ComponentLifeHolisticModel 

ComponentLifeCaseBase 
ComponentLifeDelphiDatabase 
ComponentLifeFieldDatabase 

Change all the codes within the bodies of all methods within 
the wrapper class but maintain their signatures. 
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4.3 System Testing 
 

The situated CBR framework developed in this project was tested through a series of 
operation scenarios for the required behaviours as dictated by the specification of the 
system.  It should be noted that the structure of the system is the main focus of this 
development.  The values of the component life calculated in the testing phase of the 
project do not make any realistic sense. 

 

4.3.1 Implementation Particularities 
 

Initial implementation of the CBR engine had the following points: 

• The casebase is implemented by using Java’s serialisation mechanisms.  All 
cases are stored in the file: casebase.bin. 

• User input is “hard-wired” through a series of codes.  Variations in input 
parameters involve changing the values within the source codes. 

• All cases have a fixed computed value of 100.0.  This value is “hard-coded” to 
emulate a result obtained by applying some of the domain heuristics during 
memory construction.  Currently this heuristic is not implemented. 

• The values calculated from the system are NOT to be taken as valid as all 
data used are created artificially to test different paths of the program 
execution. 

• The values obtained from the holistic model, Delphi database, field 
(maintenance) data are not valid in terms of their reflection of real-life 
scenarios.  Artificial values are created in these systems to populate their 
contents. 

Modifications to allow user input and extraction of real data from the case base and 
database were subsequently made. 

 

4.3.2 Documentation Scope 
 

Only notes that are relevant to system are listed here, documentation related to unit 
testing of individual components of the system is not presented.  Appendix V outlines 
a sample of unit testing code for the component ComponentLifeTableInput contained 
within its main() function.  Subsequent developers of the system can run these codes 
by un-commenting the relevant parts to verify the correct behaviours of the 
component under consideration. 

 

4.3.3 Output Formatting 
 

An output from a single run of the system is grouped by using the “tab” character.  
Text strings that relate to the same concept (such as the parameter names and their 
respective values that describe the user input) are indented from the left margin to 
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align vertically.  Output codes that are colour-coded correspond to colour-coded text 
found in the test descriptions listed. 

 

4.3.4 Test Scenarios 
 

A series of test scenarios were conducted to test the behaviour of the system through 
different execution paths.  The key behaviours to be tested and their respective test 
scenarios are listed in Table 4.5. 
 

Table 4.5 Test scenarios and the key behaviours tested 

Behaviour to be Tested Test Scenario 
Initial population of casebase Test Scenario 0: Initialization of Casebase 
Retrieval of alternatives from the holistic model, 
delphi database and field (maintenance) 
database 

Test Scenario 0: Initialization of Casebase 

Creation of case Test Scenario 1: Retrieval from Casebase I 
Test Scenario 2: Retrieval from Casebase II 

Saving of case Test Scenario 1: Retrieval from Casebase I 
Test Scenario 2: Retrieval from Casebase II 

Retrieval of alternatives from the casebase, 
holistic model, delphi database and field 
(maintenance) database 

Test Scenario 1: Retrieval from Casebase I 
Test Scenario 2: Retrieval from Casebase II 

Variation in maintenance factor Test Scenario 3: Retrieval from Casebase III 
Variation in maintenance and cleaning factor Test Scenario 4: Retrieval from Casebase IV 
Variation in geographic-location, maintenance 
and cleaning factor 

Test Scenario 5: Retrieval from Casebase V 

Variation in geographic-location, maintenance 
and cleaning factor 

Test Scenario 6: Retrieval from Casebase VI 

Variation in location-in-building factor Test Scenario 7: Retrieval from Casebase VII 
Variation in geographic-location Test Scenario 8: Retrieval from Casebase VIII 

 

Test Scenarios 0,1,and 2 must be run consecutively.  Test Scenarios 3, 4, 5, and 6 
can be run independently.  A series of sample runs were conducted with the holistic 
model, Delphi and field (maintenance) databases.  The results from these runs 
provide the basis for setting the various parameter values in this testing. Further 
information on testing of the CBR can be found in the Software Testing Report. 

 

4.3.4.1 Computation of Similarity 
 

A key component for producing the required behaviours for the situated CBR system 
is the computation of the similarity matrix between the sets of user input parameters 
and the cases contained within the casebase.  Figure 4.12 illustrates the key 
execution paths (as arrows) through different factors and conditions that determine 
the final similarity index.   
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Figure 4.12 Key execution paths for computing the similarity matrix 
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Figure 4.13 Execution paths of different test scenarios 
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5. QDPW APPLICATION 
 

Lifetime prediction for gutters in Queensland was chosen as an area of concern by 
the industry partner Queensland Department of Public Works.  This would assist in 
material choice and maintenance scheduling.  The general CBR designed for 
building components was relevant for this, but with some modifications.  In particular 
the holistic model needed modifications to some of its modules (See Figure 3.5) to 
make it applicable for gutters and the range of materials found for gutters. Those 
included in the program were: 

• Galvanised steel 

• Zincalume, and 

• Colorbond®. 

Also the output from the model for metals is a mass loss per year and this needs to 
be correlated with a predicted life.  Consideration also needed to be given to what 
constitutes the “lifespan” of a product with several criteria for failure being assessed. 

 

5.1 Case Definition for Gutters 
 

Gutters were broken up into different elements or cases as it was considered that the 
different elements would experience variations in local climate and as such were 
likely to degrade at different rates.  These are shown in Figure 5.1. 

 
Figure 5.1 Representation of the three gutter elements 

 

 

 

 

 

 

 

The bottom of the gutter is the area that will be most affected by an accumulation of 
dirt and debris, with the internal edges and sides less so.  The exterior of the gutter is 
considered to be ‘sheltered’ and is not an area where dirt can accumulate. However 
as a sheltered location it will not be washed by rain and thus marine salt deposited by 
wind can accumulate.   

 

5.2 Holistic Model Modifications 
 

The holistic model is used to predict the rate of corrosion of metals around Australia.  
At a particular location the prevailing climatic conditions (of primary importance are 
the airborne salinity and Time of Wetness -TOW) are used to calculate a mass loss 
per year.  Materials include zinc and steel. 

Blue – open internal edges 

Red – open internal bottom 

Green – sheltered exterior 
Gutter 
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Because gutters are a building component that is classified as a possible dirt 
accumulation zone, it was considered necessary to formulate new rules for TOW 
(following wetting events such as rainfall) to be incorporated into the model.  Clean, 
freely-flowing gutters will dry out at a different rate from gutters that have 
accumulated an amount of leaves and dirt and these rates needed to be determined. 

  

The model also no facility for handling the material of particular relevance to gutters 
ie Colorbond®.  Thus rules for the degradation of Colorbond® had to be devised. 

 

5.2.1 TOW Analysis for Gutters 
 

An experiment was undertaken to determine the time a gutter takes to dry after a 
significant wetting event such as rainfall. Data was needed from both a clean gutter 
and one which has a build up of dirt and leaf matter. The data collected from this 
experiment is used for modifying the holistic model as part of the CBR tool.  The full 
experimental details are reported in Report No 2002-059-B No 11.  Instrumentation 
of Roof Gutter to Determine Time of Wetness. 

 

5.2.1.1 Gutter Location 
 

A gutter was selected on site at CMIT, Highett. (Highett is a suburb of Melbourne in 
Victoria (Figure 5.2 

Figure 5.2. It is approximately 3 Km from Port Phillip Bay and has a salt deposition of 
approximately 8 mg/m²•day and a corrosion rate for steel of approximately 
10µm/year.)   
 
Figure 5.2 Location of Highett, a suburb of Melbourne 
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The CSIRO site at Highett also has an exposure station which is well characterised in 
terms of weather, corrosion and salt deposition. The exposure station is at the north 
end of the site and the building used is approximately 50m to the east of the Weather 
station. 

The building used for instrumentation of the gutter (shown in Figure 5.3) has an 
asbestos roof and a galvanised gutter. The gutter has both clean sections and 
sections that have a significant build up of leaf litter and dirt. The gutter has red rust 
in the sections that are dirty and some coating loss from the clean sections. The 
gutter runs in a north south direction and the roof and gutter do not have any trees 
directly overhead. 
 

Figure 5.3 View of building used for instrumentation of the gutter 

 
 

5.2.1.2 Location of Sensors in Gutter 
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Figure 5.4, shows the inside of the gutter from the south. It can be seen that the 
southern end has significant build up of leaf litter and dirt. The dirt and leaf litter is 
approximately 10mm  deep.  
Figure 5.4 View of the inside of the gutter 

 
In the clean section of gutter a wetness sensor and surface temperature sensor were 
mounted, while in the dirty section only a wetness sensor was installed. Figure 5.5 
(a) shows the clean section of gutter and the sensors attached to the bottom with 
thermally conductive tape. The clean section has some surface dirt but is generally 
clean. 
Figure 5.5 Placement of sensors in (a) clean and (b) dirty section of gutter 

(a)       (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensor attached here 
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Figure 5.5 (b) shows the dirty section and the location of the wetness sensor. The dirt 
and leaf litter was carefully lifted and the bottom of the gutter cleaned, before the 
sensor was stuck to the bottom of the gutter and the leaf litter and dirt replaced.  

 

5.2.1.3 Data Collected 
 

Data was collected from the gutter for the period from the 9th of February to the 29th 
of March 2005, at 15 minute intervals. This data from the gutter was combined with 
data from the Weather Station. Figure 5.6 shows a small section of the data 
collected. 

 

The graph shows that a wetness event, rain, occurred on the morning of the 15th of 
February and that both the clean and dirty sections of the gutter became wet. The lag 
between the clean and the dirty wetness sensor is because the dirt and leaf litter in 
the dirty section of the gutter need to wet before the gutter and sensor become wet. 
For these experiments, the start of the drying period is timed from when the weather 
station wetness sensor starts to dry. The drying period is considered ended when the 
gutter wetness sensor has returned to zero. 
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Table 5.1 details drying times for the gutter from the data collected.  For the graph in 
Figure 5.6 the drying time for the clean gutter was only 1½ hours while the dirty 
gutter took over 73 hours. 
Figure 5.6 Graph of data from 15 - 19 February 2005 
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Table 5.1 Drying times for the gutter after significant wetting events 
Dirty Gutter   

Time of Wetness event Time of Dry Gutter Time (hours: minutes) 

12/02/2005 05:15 14/02/2005 11:15  54:00 

15/02/2005 09:00 18/02/2005 10:45  73:45  

08/03/2005 08:00 09/03/2005 19:30  35:30  

11/03/2005 08:00 13/03/2005 06:00  46:00 

 Average  52:20 

   
Time of Wetness event Time of Dry Gutter Time (hours: minutes) 

12/02/2005 05:15 12/02/2005 08:40  3:30 

15/02/2005 09:00 15/02/2005 10:20  1:30 

02/03/2005 06:45 02/03/2005 08:45  2:00  

06/03/2005 07:15 06/03/2005 09:00  1:45 

08/03/2005 08:00 08/03/2005 10:15  2:15 

10/03/2005 08:00 10/03/2005 10:45  2:45 

 Average  2:15 

 

Drying times were only calculated after significant wetness events occurred, ie. either 
rain or when the wetness sensors, both gutter and air, reached their maximum value. 
The times calculated here have been used in the holistic model as indicative of the 
drying times of clean and dirty gutters.  However some variation will occur due to a 
whole range of circumstances eg. variation in relative humidity and temperature 
(measurements were taken in Melbourne late summer), and the extent of sheltering 
of the gutter. 

 

Table 5.2 shows a summary of variables typically used for corrosion studies. TOW is 
the time of wetness expressed as a percentage of time, the ISO TOW is when the 
relative humidity is greater than 80% and temperature is greater than 0°C according 
to ISO 9223. The Gutter TOWs are based on the wetness sensors and the Air TOW 
is the wetness sensor on the weather station. 

 
Table 5.2 Summary data 
Variable Value Units 

ISO TOW 22.8 % of time 

Gutter TOW Clean 54.0 % of time 

Gutter TOW Dirty 37.2 % of time 

Air TOW 14.9 % of time 

Average Air Temp 18.0 °C 

Average Gutter Temp 20.8 °C 

Average Air RH 65.9 % 
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It is interesting to note that the clean gutter has a longer TOW overall (54%) than the 
dirty section (37%). This is because the clean section is wet nearly every night due to 
condensation events while the dirt and leaf litter in the dirty section absorb a certain 
amount of water before the gutter or sensor get wet.  

 

5.2.2 Theoretical Analysis of Gutter Drying  
 

5.2.2.1 Evaporation from the gutters. 
 

A theoretical analysis of gutter drying was carried out with the key points highlighted 
below.  

 

As a rough guide, water 2.5 mm deep evaporates in about 1 hr at 50% relative 
humidity in moving air (nominally 2 m/s along the gutter). The nominal 2 m/s is 
estimated from a wind averaging about 5 m/s at eaves height; results are not very 
sensitive to the actual wind velocity unless the nominal velocity is less than 0.5 m/s. 

 

For a new gutter with correct slope the water left after rain is of the order of 0.2 mm 
thick and evaporates at 75% relative humidity (2 m/s air) in about 10 minutes. 

 

For an old gutter that has sagged and filled part way up with gunk the equivalent 
water depth may be 2 cm thick and require 16 hours to evaporate at 75% relative 
humidity (2 m/s air). 

 

Evaporation of water trapped in a 2.5 cm thick layer of gunk is expected to proceed 
at about the same rate as a 2.5 cm thick layer of water. The initial evaporation rate is 
the same, and as it dries up ‘wicking’ action of the gunk brings water up from below 
to keep the top wet where evaporation is taking place. 

 

5.2.2.2 Statistical effects on evaporation. 
 

Both relative humidity and wind speed are statistical effects. Statistically rare events 
can have a significant overall effect. In about 7% of cases the wind speed is very low 
or the relative humidity is very high. In those cases the evaporation time is longer by 
about a factor of 13, giving 8 ½ days for a gunk filled gutter. 

 

5.2.3 Colorbond® Degradation Model 
 

Essentially, there are six gutter types in Australia: 

1. Galvanised steel 

2. Painted galvanised steel 

3. Zincalume coated steel 
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4. Painted zincalume coated steel 

5. Colorbond® with one-sided topcoat 

6. Colorbond® with two-sided topcoat 

 

Modeling the degradation of these six gutter types is approached as follows. 

 

1. Galvanised steel.  The degradation of galvanised steel products is predicted 
directly from the current holistic model for galvanised materials. 

 

2. Painted galvanised steel.  Here the application of paints to the gutter is carried out 
after installation.  Quality control on such paint films is poor and a range of different 
paint formulations may be used.  The use of corrosion inhibited primers is not a 
formality in such systems and lifetime predictions are essentially meaningless.  
Depending upon the location of the gutter, any standard paint coating on galvanised 
steel will offer limited protection to the gutter over time periods exceeding five years 
(Sjöström, 1990). 

 

3. Zincalume coated steel.  The degradation of zincalume coated steel products is 
predicted directly from the current holistic model for zincalume materials. 

 

4. Painted zincalume coated steel.  Modeling is not meaningful.  See above for 
explanation for 2. painted galvanised steel. 

 

5. Colorbond® with one-sided topcoat.  Colorbond® is a product of Bluescope steel 
and has been proven to have exceptional performance in most locations across 
Australia.  Although there are different grades of Colorbond®, the most common 
make-up for guttering is steel sheet (low carbon steel) with a coating of zincalume AZ 
150 (150 g m-2), which is overcoated on both sides with a 5 µm chromate-containing 
epoxy primer.  The one-sided product has a 20 µm thick UV-resistant topcoat and a 5 
µm grey backing coat covering the primer (Bluescope Steel, 2005).  Colorbond® 
gutters are assembled so that the backing coat forms the interior of the gutter and the 
coloured topcoat forms the outer gutter. 

 

Inspections have found that before Colorbond® is installed the 10 µm backing coat is 
riddled with holes, whilst the topcoat shows few defects.  An inspection of a length of 
Box-type gutter using a holiday tester showed the backing coat to possess 
approximately 1000 point defects per square metre.  Inspection of ten panels (0.6 m 
× 0.6 m) of Colorbond® topcoat with a holiday tester estimated damage to be limited 
to approximately 2 point defects per square metre.  The number of defects was also 
increased at folded edges.  Holiday testing of fold lines on the backing coat of the 
Box-type gutter showed almost constant breaks in the coating.  The folded edges on 
the topcoat were not initially damaged.   

 

Most paint films are thought to be best modelled with either a localised mechanism 
only or a combination of localised and general mechanisms (Sjöström, 1990).  
Colorbond®, which comprises of two organic layers, a thin epoxy primer containing 
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inhibiting pigments and a poly vinylidene fluoride topcoat has been shown to fail in 
localised areas.  Inspection of the defects located on unexposed Colorbond® 
suggested that they had a diameter in the range of 50 µm.  The model presented 
here assumes the following: 

 

- Colorbond® is installed using best practice: that fasteners and washers are 
selected as per the manufacturers specifications, that materials are not 
damaged or exposed to contamination sources, and that neutral-cure silicone 
sealants are used for edge protection. 

- It is assumed that the Colorbond® topcoat has isolated defects with a 50 µm 
diameter.  The backing coat is assumed to have 50 µm defects that are 
interconnected with other defects, thus giving rise to an increased rate of 
chromate leaching from the primer. 

- That strontium chromate is leached from the 5 µm thick primer layer and is 
able to inhibit corrosion until it is depleted through either washing or 
precipitation into a more insoluble form (Furman et al., 2005; Wang et al., 
2004; Scholes et al., 2005; Sinko, 2001; Zin et al., 1998).  

- The presence of salts enables moisture to be condensed at relative 
humidities below either 35% RH (sea salt) or 75% RH (sodium chloride) 
(Muster and Cole, 2005).  The presence of salts encourages chromate 
leaching to occur at an increased rate (Prozek and Thierry, 2004). The 
concentration of salts on the surface and the surface condition (dry, wet) is 
calculated using the existing holistic model.   

- As soluble chromate levels are depleted corrosion commences on the 
zincalume layer (Baghni et al., 2004).  Corrosion rates are assumed to be 
directly proportional to the concentration of salts on the surface (Davis et al., 
1987). 

- The corrosion of zincalume is assumed to occur with an aspect ratio of 50:1.  
That is, for every micron in depth of penetration into the coating, the coating is 
undercut 50 microns either side of the defect.  At total penetration of the 20 
µm thick zincalume it is therefore assumed that an area 2 mm in diameter is 
being attacked by the environment.  The aspect ratio was developed from 
cross-sections of Colorbond® materials where damage had occurred. 

- Zincalume corrosion within the defect is assumed to occur at a rate similar to 
that of an uncoated surface.  Therate of zincalume mass loss for a given salt 
deposition rate over a one year period is used (King et al., 2001; Ganther and 
Cole, 2002). 

- Once the depth of corrosion damage reaches 20 µm into the zincalume 
corrosion rate is accelerated by the exposure of steel according to relative 
steel:zincalume areas available for galvanic corrosion (Bluescope Steel, 
2005; Tada et al., 2004).   

- Once a steel area of 0.25 cm radius is exposed, the zincalume is assumed 
not to galvanically protect the underlying steel any more and steel corrosion 
occurs (Tada et al., 2004). 

- Mild steel corrosion within the defect is assumed to occur at a rate similar to 
that of an uncoated surface.  The rate of steel mass loss for a given salt 
deposition rate over a one year period is used (King et al., 2001). 
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6.  Colorbond® with two-sided topcoat. Will be dealt with as detailed above for 
Colorbond® with topcoat and backing sheet but with two topcoats. 

 

5.2.3.1 Modelling: Equations and interdependencies 
 

Figure 5.7 provides a visual representation of the sequence of steps used to model 
Colorbond® degradation. 

 

Figure 5.8 provides a schematic of the interdependencies for the modelling of metal 
degradation under an organic coating consisting of primer and topcoat. The presence 
of chromate pigments enable corrosion to be limited when in the presence of water 
and salts.  Once chromate is leached, either directly from the primer or through the 
topcoat or backing coat, corrosion of the zincalume is initiated.  Chromate leaching is 
enhanced by water, salts and UV exposure.  Corrosion is accelerated by the 
presence of water and salts.  In reality, the onset of zincalume corrosion beneath the 
paint film is likely to create an increased defect volume and also, in some instances, 
expose the defect to fresh reserves of chromate.  The current model does not 
consider the availability of new reservoirs of chromate. 

 

5.2.3.2 Modelling Chromate depletion 
 

Chromate leaching from an epoxy-polyimide polymer has been shown to yield 200 
µg per square centimetre of exposed primer during a 10-day immersion (Scholes et 
al., 2005).  Chromate is assumed to leach according to Fick’s second law (i.e. t0.5 
dependence).  There is some conjecture as to whether leaching is likely to be Fickian  
(Furman et al., 2005).  However, the t 0.5 dependence is likely to provide a reasonable 
fit for “universal” primer systems.  Work by Zin et al. (1998) and Sinko (2001) 
observed a t0.5 dependence.  

 

The leaching rates used for the model are derived from the 10-day immersion data of 
Scholes et al. (2005), which is modelled with a t0.5 relationship as shown by the thin 
solid line in Figure 3.  Additional leaching of primer through the back coat and top 
coat of Colorbond® is assumed to follow an identical t0.5 relationship but is assumed 
to be limited by an increased barrier to diffusion which is calculated directly from the 
thickness of the backing coat and top coat (see dashed lines in Figure 5.9).   
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Figure 5.7 Model for the degradation of Colorbond® materials. (a) A 50 mm diameter defect in the 
organic coating is assumed, (b) chromate is leached from the primer due to the presence of 
moisture and salts, (c) upon depletion of chromate inhibitor zincalume is corroded with an 
aspect ratio of a/d = 50, (d) where d exceeds the thickness of zincalume, surrounding 
zincalume is lost at an increased rate due to galvanic corrosion.  Steel corrosion is assumed 
to occur when g > 1 cm and zincalume no longer provides sufficient galvanic protection for 
the underlying steel.   
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Figure 5.8 Circular relationships determining metal degradation at a defect in a primer and topcoat. 

 
Figure 5.9 Chromate depletion model.  Depletion occurs directly from primer in defect and through 

backing coat and to a lesser extent through the topcoat. 
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5.2.3.3 Influence of salt concentration on leaching rate 
 

Chromate leaching has also been shown to be a function of chloride concentration 
(Prosek and Thierry, 2004).  Chloride anions are able to associate with soluble 
chromate and encourage dissolution of pigments.  Prosek and Thierry (2004) found 
that 10 mmol L-1 of NaCl increased chromate leaching by 30%.  By increasing the 
NaCl concentration to 100 mmol L-1 had minimal additional impact.  The amount of 
chromate leached during a 3-hour period allowing for the influence of salt 
concentration is given as: 

 
0.1544

1( )*(1.2123[ ] )Cl t tL L L Cl−= −     …Eqn 5.1 

 

5.2.3.4 Influence of photooxidation on leaching rate 
 

Data from Bauer (2000) shows that the relative photooxidation rate can be correlated 
to latitude coordinates for the northern hemisphere.  Here, it is assumed that the 
correlations hold for the southern hemisphere.  The data presented in Figure 5.10 
allows for time of UV exposure, UV spectrum changes and for the influence of 
relative humidity.  

 
Figure 5.10 Dependence of photooxidation rate on latitude.  Data from Bauer (2000)  
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Correlation of the relative photooxidation rates with damage to Colorbond® was 
achieved by matching the % failure data provided by Bauer (2000) with the failure 
ratings of Colorbond® provided by King et al. (2001).  Failure of the topcoat and 
backing coats will lead to increased loss of chromate from the primer.  The total loss 
of chromate is given as: 

 
2(1 )( 0.0004*LAT 0.0003.LAT)total ClL L xt= + − +   mol  …Eqn 5.2 

 

where x = 0.8 for topcoat and 0.4 for backing coat, t = time in years, LAT = latitude in 
degrees. 

 

The amount of chromate remaining in the 25 µm area surrounding the defect is given 
as: 

Crrem = 1.084 × 10-10 – Ltotal  mol     …Eqn 5.3 

 

5.2.3.5 Protection by chromate 
 

The amount of protection offered against corrosion by chromate is calculated using a 
dependence factor, Crdep, and is obtained from electrochemical data (see Figure 
5.11) that defines corrosion rates (currents) as a function of available chromate 
concentration [Cr].   

 
[ ]/ 0.000020.15 1.85

0.15

Cr

dep
eCr
−+

=         …Eqn 5.4 

 

Crdep has a maximum value of 2.  The available chromate concentration [Cr] is 
derived from equation 5 and is a function of the recently chromate released [Ltotal(t)-
Ltotal(t-1)] into the volume of the defect and the fraction of chromium remaining in the 
primer surround the defect.  

 

10

[ ( ) ( 1)][ ]
1.084 10

total total remL t L t CrCr
V −

− −
=

×
    …Eqn 5.5 

 

The volume, V is the volume of the defect plus the 25 µm of the primer surrounding 
the defect. 

 
2(50) 5V π=  µm = 3.92699 × 10-11 L 
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Figure 5.11 The influence of chromate concentration on the corrosion current of zincalume at varying 

chloride concentration.  Shaded area represents the typical concentrations of chromate 
during leaching. 
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5.2.3.6 Zincalume mass loss 
 

The actual corrosion is given by: 

 

( 1)ZA ZA depd M Cr= × −      …Eqn 5.6 

 

and is maximum when Crdep = 2, which occurs when [Cr] < 5 × 10-5 mol L-1. Under the 
set conditions when [Cr] exceeds 2.9 × 10-4 mol L-1 no corrosion occurs.  These 
values are in affect generated from the experimental data presented in Figure 6.  
Values for MZA and MSTEEL are calculated from the work of King et al. (2001), who 
quoted the yearly corrosion rates given in Table 5.3. 

 
Table 5.3 Corrosion rate data from King et al. (2001). 
Site Rain 

days/yr 
Estimated time-of-
wetness (% > 75) 

Salt 
(mg/m2.day) 

Zincalume 1yr 
(µm/yr) 

Mild steel 1 yr 
(µm/yr) 

Navy 
(Flinders) 

161 80 63 1.413 30 

Waterboard  70 27 0.343 21.8 

CSIRO  65 7.8 0.237 11.2 

  

Values of corrosion rates are modified by the estimated time-of-wetness to allow a 3-
hourly corrosion rate to be calculated.  Figure 5.12 shows the generation of corrosion 
rates as a function of salt deposition allowing for time-of-wetness. 
Figure 5.12 Correlations between mass loss and average salt deposition rate for three sites.  Data from 

King et al. (2001). 
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Once the zincalume mass loss reaches 20 µm the underlying steel is exposed.  At 
this point the exposed steel is able to fill the role as a cathode and promote 
zincalume corrosion at an increased rate.  Electrochemical testing revealed that 
zincalume corrosion currents are approximately 1.42 times greater when coupled to 
an equal area of mild steel, where the separation distance was less than 1 cm.  For 
this reason when d > 20 µm, dZA is multiplied by a factor of 1.42. 

 

5.2.3.7 Steel mass loss 
 

Steel mass loss is not expected to occur until zincalume surrounding the area is 
consumed.  Zincalume mass loss is assumed to occur with the shape of a spherical 
cap (see Figure 5.7) where d/a = 1/50.  The d/a ratio was adopted from cross-
sectional analysis of a damaged area after significant damage (Figure 5.13).  Once a 
steel area of 0.5 cm radius is exposed, the zincalume is assumed not to galvanically 
protect the underlying steel any more and steel corrosion occurs (Tada et al., 2004).  
The 0.25 cm radius area occurs when the effective dZA > 50 µm.  Steel corrosion for 
a three hour period is given by: 

 

0.00336ln[ ] 0.00083STEELM Cl= − µm   …Eqn 5.7 

 
Figure 5.13 SEM cross-section showing typical damage at the site of a defect.  Sample shown was 

exposed to 35 cycles of GM9540P accelerated corrosion test.  

 

 
 

 

A summary of the inputs for the model are included in Table 5.4. 
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Table 5.4 Inputs, parameters and details of mathematics within the Colorbond® degradation model. 
Parameter Symbol Units Value Description 

Surface condition S  0 = dry 

1 = condensed moisture 

2 = raining 

Determines whether wet or dry.  Derived from relative humidity and 
surface temperature data in holistic model. 

Cumulative time-
of-wetness 

TOWcum hours When S =  1 or 2, 

)log( 0.5(log )
310

cum
cum

cum

TOWL
TOW

−
+=  

For both topcoat and backing coat: Lcum=1.41E-13 mol 
when TOWcum= 0 hrs. 

Cumulative time-of-wetness, where S = 1 or 2 allows leaching of Cr 
from primer according to Fick’s second Law.   

Leached Cr Lcum mol Lcum is the running accumulation of chromate that would 
be leached in the absence of chloride anions. 

Lcum is dependent upon the area of primer exposed and not on the 
total chromate concentration or liquid volume. 

Additional 
leaching 

Ladd mol 
Back: 

)log( 0.5(log )
310

cum
cum

cum

TOWL
TOW

−
+=   

Top: 
)log( 0.5(log )

310
cum

cum
cum

TOWL
TOW

−
+=  

The additional leaching of Cr through the backing coat or topcoat.  
Initial values, backcoat =1.128E-13, topcoat = 2.282E-14. 

Salt modified 
leach rate 

LCl mol = ((Lcum+Ladd)*1.2123*[Cl]0.1544) The loss of chromate in a single 3-hour period given that a certain 
concentration of chloride is present on the surface. 

Latitude LAT Degrees  Input to describe the likely photooxidation rate (UV) exposure of paint 
films. 

Sun/Salt 
leaching 

Ltotal mol =(1+x*time)*(-0.0004*LAT^2+0.0003*LAT+1.2558)*LCl 

x = 0.8 for topcoat, 0.4 for backing sheet. 

Leaching as a result of both sun and salt. 

x values are derived from Bauer (2000). 

Cr remaining Crrem mol Initial - totalL   

Crrem = 1.084 × 10-10 – Ltotal  mol 

Initial Cr present minus the cumulative sum of all leached chromate.  
Assuming the primer contains 20 % v/v strontium chromate, the total 
available pigment in a 25 µm zone surrounding the defect is of the 
order of 0.20 × 18.4 mmol cm-3 × 2.945 × 10-8 cm3 = 1.084 × 10-10 
mol.  Cr has been shown to leach from no further into epoxy-based 
paints than about 25 µm from a defect. 
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Parameter Symbol Units Value Description 

Defect volume V L = 3.92699E-11 for both topcoat and backing coat. Initial volume (50 µm damage) + 25 µm area surrounding damage.  
25 µm surrounding damage is the accessible area for Cr to leach 
from.  Volume is generated from the 5 µm nominal thickness of 
primer. 

Salt 
concentration 

[Cl] mg/m2.day Cumulative salt deposition derived from holistic model.  

Active chromate 
concentration 

[Cr] mol/L 
10

[ ( ) ( 1)][ ]
1.084 10

total total remL t L t CrCr
V −

− −
=

×
 

The estimated amount of chromate in mol/L available to prevent 
corrosion.  Calculated based upon leached amount and volume. 

Non-Cr 
zincalume mass 
loss 

MZA micron Where d > 20 µm, M is multiplied by 1.42 due to 
increased galvanic corrosion resulting from steel 
exposure. 

=0.0000091+0.0000013[Cl] 

Mass loss of zincalume calculated based upon holistic model at a 
given salt accumulation. 

Chromate 
dependence 

Crdep  (0.15+1.85*EXP(-Crdep/0.00002))/0.15 Dependence of corrosion rate on chromate concentration 

Actual zincalume 
mass loss 

dZA micron (Crdep-1)*MZA Estimated real damage to zincalume in terms of depth. 

Cumulative 
actual zincalume 
mass loss 

d micron 
zad∑  

Sum of corrosion damage 

Steel corrosion dSTEEL micron 0.00336*LN[Cl]-0.00083 Where g > 50, d is predicted by holistic model for steel mass loss 
given a certain salt accumulation. 

Cumulative metal 
mass loss 

dtotal micron 
= za std d+∑ ∑  

Total depth of penetration into substrate. 
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5.2.3.8 Preliminary data from model 
 

As a demonstration, the model predictions for the locations of Flinders Naval Base 
(Victoria) and Brisbane, Cairns and Charleville (Queensland) are presented.  Details 
of the input parameter values used to generate results are provided in Table 5.5. 

 
Table 5.5 Abbreviated meteorological data and estimated salt deposition rates. 
Location Latitude Estimated % time where 

water is condensed on 
surface or rain event. 

Estimated salt 
deposition (mg/m2.day) 

Flinders Naval Base 38.3 90 % 300 

Brisbane 27.5 50 % 20 

Cairns 16.9 83 % 15 

Charleville 26.4 33 % 5 

 

Figure 5.14 provides graphical calculations for the model based upon the inputs from 
Table 5.5.  Further qualification of the model linked to the holistic model is required to 
confirm the accuracy of this first attempt model for Colorbond degradation. The 
suggested outputs from the model are: 

- time for chromate depletion (time to white rusting, d > 0) 
- time to penetration of zincalume (d = 20 µm) 
- time to red rust initiation (d = 50 µm) 
- time to hole generation through sheet (d > 500 µm)  [Steel ~ 600 µm thick]. 

 

5.2.3.9 Discussion of Colorbond® model 
 

The model produced to date is essentially an attempt to model the degradation of an 
extremely complex system.  Colorbond®, or painted items in general, are difficult to 
quantify due to the often unpredictable nature of installation and treatment of 
materials.  For instance, a scratch in the paint or incorrect protection at the edges will 
have a much larger influence on the longevity of a painted article than a 50 µm defect 
assumed in the current model.   

 

Major errors and complications of the model include: 

- The exact geometry of the defect is not likely to be 50 µm and geometry of 
zincalume corrosion and paint delamination is likely to vary in many cases. 

- The wetting and drying rates within a defect and under the paint film are likely 
to vary from the surface as a whole. 

- Factors affecting or influenced by adhesion of the paint are not considered. 
- Salt concentrations within the defect are likely to be higher than on the open 

surface.  This is expected to result in a more rapid corrosion of the underlying 
metal.  No factor is currently incorporated to allow for this affect.  However, 
straightforward experimental studies could validate such factors. 

- The exact dimensions of the zincalume and paint films are likely to vary and 
also the amount of available chromate pigments in a localised area will vary. 
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Figure 5.14 Output data from Colorbond® degradation model, a) Flinders topcoat (left), backing coat 
(right); b) Brisbane topcoat and backing coat; c) Cairns topcoat and backing coat; d) 
Charleville topcoat and backing coat.  Green line = remaining chromate, blue line = mass loss 
of zincalume, red line =  mass loss of steel. 

a 

b 

c 

d 
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5.2.4 Conversion of Mass Loss to Life Estimate 
 

The output from the holistic model is generally a mass loss per year for the metals 
and metallic coatings and the paint coatings provide a measure of the damage 
accumulation.  In order to interface the holistic model with the CBR engine, the 
output needs to be converted into a component life, in years. 

 

To convert the mass loss to a component life three additional pieces of information 
are required  

1. Final Failure Criteria 

2. Event “Tree” for failure  

3. Conversion from mass loss per year to mass loss over an appreciable time.  

 

5.2.4.1 Final failure Criteria  
 

The failure criteria for a component depends on its use. Three types of criteria are 
relevant  

1. Structural safety  

2. Serviceability  

3. Aesthetics  

 

The criteria in each case may be different and needs to be applied separately for roof 
sheeting and guttering. 

 

Roof sheeting  

1) Structural safety – not relevant  

2) Serviceability – no through sheet corrosion  

3) Aesthetics:  

a) Light criteria – Red rust less than 50%  

b) Tight Criteria – No Red rust  

 

Guttering 

The criteria for failure would have the same definitions but the user may select 
different criteria for roof and guttering.  

 

5.2.4.2 Event Tree For failure  
 

The event tree for failure would be different for different materials and criteria.  These 
required events are set out in Table 5.6 and definitions of these events in Table 5.7. 
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Table 5.6 Required Events for Failure 
Material  Criteria Event 1  Event 2 Event 3  

Colorbond®  Serviceability Failure of 
polymeric coating 

Failure of 
Zincalume 
coating  

Through 
Corrosion of 
Steel substrate  

Colorbond®  Aesthetics-A   Failure of 
polymeric coating 

Failure of 
Zincalume 
coating  

50% Red Rust 

 Aesthetics -B Failure of 
polymeric coating 

Failure of 
Zincalume 
coating  

 

Zincalume  Serviceability Failure of 
Zincalume 
coating  

Through 
Corrosion of 
Steel substrate  

 

 Aesthetics-A   Failure of 
Zincalume 
coating  

50% Red Rust  

 Aesthetics -B Failure of 
Zincalume 
coating  

  

Zincalume  Serviceability Failure of Zinc 
coating  

Through 
Corrosion of 
Steel substrate  

 

 Aesthetics-A   Failure of Zinc 
coating  

50% Red Rust  

 Aesthetics -B Failure of Zinc 
coating  

  

 
Table 5.7 Definition of Failure 

Event Definition Explanation  

Failure of polymeric 
coating  

D= 1 D is damage index 

Failure of 
Zincalume coating  

ML= 0.75* Coating Mass Coating mass is specified for all materials 
– assume Coating mass = 150 g/m2 

Failure of Zinc 
coating  

ML= 0.75* Coating Mass Coating mass is specified for all materials 
– assume Coating mass = 275 g/m2 

Through Corrosion 
of Steel substrate 

TL= 1 * Component Thickness  Component Thickness is specified for all 
materials assume = 0.6 mm 

50% Red Rust  TL=0.1 mm.  

 

5.2.4.3 Derivation of Events from Holistic Model 
 

Polymeric Coatings 

The holistic model gives D per year which is to be called d 

 

D  = d*Tn                                                                                       …Eqn 5.8 

Here T is time in years , n is a constant which can be taken as 1.1 
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Zincalume 

The holistic model gives ML per year which is to be called m 

 

ML  = m*Tn                                                                                 …Eqn 5.9 
 

Here T is time in years , n is a constant which can be taken as 0.6. 

 

Zinc Coating  

The holistic model gives ML per year which is to be called m 

 

ML  = m*Tn                                                                              …Eqn 5.10 
 

Here T is time in years , n is a constant that depends on m 

 

n= 0.62+0.212ln(m/14.2), n>=0.62.                                         …Eqn 5.11 

 

Steel  

Holistic model gives ML per year which is to be called l 

 

TL  = C*l*Tn                                                                             …Eqn 5.12 
 

Here T is time in years , C is a rust concentration factor (set at 2.5) n is a constant 
that depends on l 

 

n= 0.62+0.212ln(l/14.2)                                                          …Eqn 5.13 

 

5.2.5 Gutter Survey 
 

A roof and gutter survey carried out by CSIRO MIT has been used to determine 
some parameter values in the modified holistic model for gutters.  The age and 
condition of a number of gutters were assessed and the data is reported in CRC 
report 2002-059-B No 10, Summary of Gutter Survey by CSIRO. 

 

The buildings surveyed were located in 7-10 Km radius of CSIRO at Highett (Figure 
5.2) which has a salt deposition of approximately 8 mg/m²·day and a corrosion rate 
for steel of approximately 10µm/year (See 5.2.1.1 above).  

 

The buildings surveyed were of various construction types and the gutters were 
basically Colorbond®, galvanised, Zincalume or copper. The copper gutters were 
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ignored, they were in good condition after 25+ years and are not typical of current 
building practice. Gutters that did not have a painted coating on the inside, were 
deemed to be the corresponding base metal in type. That is some Colorbond® 
gutters were Colorbond® on the outside and so were deemed to be Zincalume. Also 
a number of the galvanised and Zincalume gutters were painted on the outside but 
not the inside, so they were typed as their metal type.  

 

In general the all the gutters had some dirt present in them, most had a complete 
covering of the bottom or were full of dirt and leaf litter. 

 

5.2.5.1 Damage Scale 
 

In order to interpret the data a damage rating scale was conceived for the gutters. 
The scale went from 0 with no damage to 5 with perforation of the gutters. Table 5.8 
details the rating scale used to rate the gutters. 

  
Table 5.8 Legend of damage ratings for Gutter survey 

Damage 
Rating 

Condition Condition around joints 

0 No Damage No Damage 

1 Some loss of paint gloss/coating (Top coat 
only on multi-coat systems), dulling of surface 

Discolouration of paint at joins and near rivets, 
fasteners or brackets 

2 Loss of paint (chips lost, peeling, undercoat 
may still be intact), 
White corrosion product less than 50% 

Some corrosion of rivets, fasteners or brackets 

3 Some red rust present, less than 50% of a 
particular area ie, bottom surface 

White corrosion products on rivets, fasteners 
or brackets and cut edges 

4 50- 100% red rust Red rust and white corrosion products on 
rivets, fasteners or brackets and cut edges 

5 Perforation Loss of rivets, fasteners or brackets, 
perforation of material 

 

 

5.2.5.2 Summary of Gutter Data 
 

The gutter information from the survey is summarised in Table 5.9. The corrosion 
level shown in the table is based on the Corrosion map of Melbourne 1979-80 (King, 
Martin and Moresby, 1982), and is in µm/year loss of metal from Low Alloy Copper 
Barring Steel coupons, a standard corrosion coupon used by CSIRO for corrosion 
mapping work. This gives an indication of the aggressiveness of the environment.  
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Table 5.9 Summary of gutter survey to April 2005 
Painted  Gutter Condition Name Age 

(yrs) 
Distance 
to Bay 
(km) 

Longitude Latitude Corrosi
on level 
(µm/yea
r) 

Gutter type 

Outside Inside Bottom 
Inside 

Inside 
sides 

Outside Around 
joins & 
cutouts 

B1 <1 2.4 145° 0.84’ E 37° 54.91’ S 13 Colorbond®   0 0 0 0 
D1 6.5 4 145° 7.06’ E 37° 58.91’ S 17 Zincalume® Yes  3 2 0 0 
C1 10 4.5 145° 3.52’ E 37° 57.08’ S 16 Zincalume® Yes  3 1 0 0 
M1 ~15 1.8 145° 4.61’ E 37° 58.75’ S 17 Galvanized Yes Yes 3 1 0  
BR1 30 0.15 145° 0.85’ E 37° 58.31’ S 22 Galvanized Yes  4 3 3 0 
C2 25 2.5 145° 4.82’ E 37° 58.34’ S 17 Zincalume® Yes  2 1 0  
P1  7 0.8 145° 4.67’ E 37° 59.51’ S 17 Colorbond®   0 0 0 4 
B2 10-15 1.8 145° 0.42’ E 37° 55.17’ S 15 Zincalume® Yes  2 2 0 0 
H1 >30 4 145° 3.28’ E 37° 57.16’ S 15 Galvanized Yes  4 4 Lip 4

rest 2 
? 

CY1 3 9 145° 7.81’ E 37° 55.68’ S 15 Zincalume® Yes  0 0 0 0 
B3 >20 0.8 144° 59.75’E 37° 53.75’S 15 Galvanized Yes  4 2 2  
B4 30 0.9 144° 59.79’E 37° 53.61’S 15 Galvanized   5 3 5 2 
B5 15 1.4 145°  0.06’E 37° 54.06’S 13 Zincalume® Yes  3 2 0 2 
B6 5 1.4 145°  0.06’E 37° 54.06’S 13 Colorbond®   1 0 0 3 
A1 5 10 145° 5.56’E 37° 52.15’S 13 Colorbond®   0 0 0 2 
CH214 26 3 145° 2.43’E 37° 57.02’S 17 Galvanized   4 3   
CH303 50? 3 145° 2.43’E 37° 57.02’S 17 Galvanized   4    
CH301 55 3 145° 2.43’E 37° 57.02’S 17 Galvanized   5 4 5  
CH201 48 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes  5  5  
CH207 35 3 145° 2.43’E 37° 57.02’S 17 Copper       
CH208 27 3 145° 2.43’E 37° 57.02’S 17 Copper       
CH213 25 3 145° 2.43’E 37° 57.02’S 17 Zincalume®  Yes 4    
CH213a 16 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   0 0 0 0 
CH101a  3 145° 2.43’E 37° 57.02’S 17 Colorbond®   0 0 0 0 
CH101 26 3 145° 2.43’E 37° 57.02’S 17 Copper box       
CH102 38 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes  5  5  
CH106 <26 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   0 0  3 
CH109  3 145° 2.43’E 37° 57.02’S 17 Galvanized   5  5  
CH207a <10 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   0 0 0 0 
CH208a <10 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   0 0 0 0 
CH41a <10 3 145° 2.43’E 37° 57.02’S 17 Colorbond®    3 3 3  
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Painted  Gutter Condition Name Age 
(yrs) 

Distance 
to Bay 
(km) 

Longitude Latitude Corrosi
on level 
(µm/yea
r) 

Gutter type 

Outside Inside Bottom 
Inside 

Inside 
sides 

Outside Around 
joins & 
cutouts 

CH25 28 3 145° 2.43’E 37° 57.02’S 17 Galvanized   5  5  
CH11 46 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes  5 4 5  
CH27 35 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes  5  5  
CH29 10-15 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   0 0 0 2 
CH29a 10-15 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   0 0 0 2 
CH13 38 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes  5  5  
CH13a 10 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   0 0 0 0 
CH13b 10 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   3 1 1  
CH12a 10 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   0  1 3 
CH14 38 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes  5  5  
CH15 20 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   0  2  
CH15a 37 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes  3    
CH15a 10? 3 145° 2.43’E 37° 57.02’S 17 Colorbond®   3 0 0  
CH35 27 3 145° 2.43’E 37° 57.02’S 17 Zincalume® Yes No 2 2 2 2 
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The corrosion levels are all between 13 and 22µm/year. These are typical values for 
Melbourne and not considered severe. 

 

The data collated in Table 5.9 is shown graphically in Figure 5.15, Figure 5.16 and Figure 
5.17.  

 
Figure 5.15 Graphical representation of the state of Galvanised gutters with age 
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Figure 5.16 Graphical representation of the state of Zincalume gutters with age 
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Figure 5.17 Graphical representation of the state of Colorbond® gutters with age 
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The graph for the galvanised gutters shows ages up to 60 years while the Zincalume® and 
Colorbond® graphs only show up to 30 years. While Colorbond® was introduced into 
Australia in the mid 1960s, it was only coated on one side and used galvanised steel as a 
base metal. Zincalume® was introduced to Australia in the 1970s and Colorbond® at that 
time changed to having Zincalume® as the base material and was coated on both sides. This 
is why we only have data up to 30 years for Colorbond® and Zincalume®. During this time 
numerous Colorbond® paint systems have been used with each one having slightly different 
weathering properties. 

 

Looking at the galvanised gutter graph, Figure 5.15, the gutters show some damage between 
10 and 20 years and significant damage requiring replacement after approximately 20 to 30 
years. It should be noted that the youngest galvanised gutter surveyed was 10 years old. 

The Zincalume® gutters, Figure 5.16, show some damage after 7 to 10 years with one gutter 
showing significant damage requiring replacement at 25 years.  

 

The graph of the Colorbond® gutters, Figure 5.17, shows damage on some of the gutters 
after 5 to 10 years with some showing spots of red rust. The oldest gutters were 20 to 25 
years old and none of the gutters showed enough damage to consider replacement. 

 

5.2.5.3 Conclusions from Survey 
 

From this gutter survey it is concluded that galvanised gutters in the survey area show some 
damage by 10 years, with significant damage, leading to the need for replacement, at around 
20 years.  The Zincalume® gutters showed some damage around 10 years and replacement 
was needed after 25 years.  The Colorbond® gutters showed some damage after 5 years, 
but no significant damage causing the need for replacement in any of the gutters surveyed 
with the oldest being approximately 20-25 years.   
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5.2.6 Holistic Model Program for Gutters 
 

The modifications made to the holistic model to adapt it for use with gutters have been 
incorporated into a stand-alone program, mainly for development purposes, but it can be 
used to model mass loss for gutters at any point in Australia.   

 

The Holistic model as outlined previously contains a number of modules (Figure 3.5) to:  

a) predict the salinity at a location  

b) predict the climate at a location  

c) predict salinity retention on a component on a building  

d) predict the state of a surface on a component on a building  

e) predict the damage of the component on the building. 

  

In adapting the holistic model for the gutter application: 

a) and b) were unchanged from the prior holistic model,  

c) modifications were made to constants in the model to reflect the different cases for 
gutters but the basic formulation remained the same, 

d) modifications were made for the case of a gutter filled with dirt and debris (TOW), 

e) modifications made for galvanised steel and zincalume and completely developed for 
Colorbond. 

 

5.2.6.1 Salinity Retention 
 

In calculating whether salt will be retained on a surface in the event of rain it is assumed that 
salt cleans off a surface according to the following relationships: 

 

Di after wash = Φ + ψ* Di-1                                                                                                               ...Eqn 5.14 

 

Where Di is the retained salt after a rain event and Di-1 is the deposited salt prior to a rain 
event . Φ  is taken as 1 and the values of ψ are given in Table 5.10.  Here LMI, SMI and HMI 
refer to low ,medium and high moisture index which is a parameter which describes the rate 
of evaporation and O refers to open exposure (gutter bottom and edges) and S to sheltered 
(underside of gutter).   

 
Table 5.10 Values of ψ defined for various parameter combinations 

Moisture Index Open/Sheltered ψ 

LMI O 0.1 

 S 0.6 

SMI O 0.5 

 S 0.6 

HMI O 0.5 

 S 0.6 
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5.2.6.2 State of surface of building component 
 

Three states of a surface are defined  

a) S1 – dry  

b) S2 –wet from wetting of hygroscopic salts  

c) S3 - wet from rain  

 

The holistic model calculates state on a three hour interval. The standard model assumes 
that a surface is in state 3 whenever rain is occurring but once the rain has ceased, it is dry 
before the next 3 hour period .If the rain ceased in the middle of the last time period this 
implies drying takes no more than 1.5 hours. The studies of gutters indicates that this is a 
reasonable assumption for all cases, except the bottom of gutters filled with dirt and debris. 
For this case it is assumed that the gutter remains in State 3 for 48 hours after rain. 

 

5.2.6.3 Damage to Components  
 

The damage to components is also calculated each three hours from a knowledge of the 
state of the component, the retained salinity and climatic parameters. Two different 
approaches are used for a) uncoated metals (steel, galvanised steel and zincalume) and b) 
coated steel.  

 

Uncoated Metals  

 

The standard holistic methods is used in which the corrosion rate is calculated each three 
hours according to the following equations:  

 

Ms1 = 0                                                                                              …Eqn 5.15 

 

Ms2 = ζ*M2                                                                                          …Eqn 5.16 

 

Where M2 depends on RH 

 

For 35<RH<75   

 

M2= З + Φ* D Φ                                                                                 …Eqn 5.17 

 

Where D is the retained salt and the values of the constants are given in the Table 5.11– 
Table 5.16.  

 

For RH>75  

M2= Θ + Ω *D Ψ                                                                                …Eqn 5.18 
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For State 3  

Ms3= ζ * M3                                                                                     …Eqn 5.19 

 

In the case of M3, the rate of mass loss varies on the basis of the component case (gutter –
edge, bottom(cleaned and uncleaned) or sheltered). This approach is based on the 
understanding that significant salt will be retained in the dirt at the bottom of the gutter and 
this will significantly increase the corrosion rate for gutter bottoms in an uncleaned condition. 
In fact in a future version of the model it would be desirable to introduce a retained salt 
dependence into M3 and then remove this component case dependence. 

 
Table 5.11 Constants for galvanised steel mass loss in State 2 

Θ 0.02 

Ω 0.027 

Ψ 0.5 

З 0.02 

θ 0.027 

Φ 0.5 

ζ 1 

 
Table 5.12 Constants for galvanised steel mass loss in State 3 

 ζ 

open 1 

sheltered 2 

Partial sheltered 1.5 

 
Table 5.13 Additional constants for galvanised steel mass loss in State 3 

Case Ms3 

Gutter-sheltered 0.02 

Gutter-open -edge 0.05 

Gutter-open bottom-uncleaned 0.6 

Gutter –open bottom-cleaned  0.05 

 
Table 5.14 Constants for Zincalume mass loss in State 2. 

Θ 0.027 

Ω 0.004 

Ψ 0.5 

З 0.0 

θ 0.002 

Φ 0.5 

ζ 1 
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Table 5.15 Constants for Zincalume mass loss in State 3 
 ζ 

open 1 

sheltered 2 

Partial sheltered 1.5 

 

Table 5.16 Additional constants for Zincalume mass loss in State 3. 
 Ms3 

Gutter-sheltered 0.027 

Gutter-open -edge 0.05 

Gutter-open bottom 0.15 

Gutter –open bottom-cleaned  0.05 

  

 

5.2.6.4 Application of the Model  
 

To test the model, the mass losses at two locations in southern Queensland were estimated. 
One was a Marine location and the other a benign location (Table 5.17). In Table 5.18 a 
comparison of the estimate of the life of gutters based on the Delphi study, roof survey and 
holistic model is made. It is apparent that the lifespan estimates are similar when like cases 
are considered. 

 
Table 5.17 Estimated mass loss at two locations in Queensland 
Longitude  Latitude  Salinity  Exposure    Mass 

loss –
g/m2. 

153 441 28061 38 Open  bottom zincalume NC 19 

   Open  bottom zincalume C 13.5 

   sheltered  zincalume  7.3 

   Open  edges zincalume  8.9 

153 441 28061 38 Open  bottom galvanised NC 33 

   Open  bottom galvanised C 31 

   sheltered zincalume galvanised  31 

   Open  edges galvanised  18 

153 425 28049 6 Open  bottom zincalume NC 67 

   Open  bottom zincalume C 16 

   sheltered  zincalume  9 

   Open  edges zincalume  12 

153 425 28049 6 Open  bottom galvanised NC 56 

   Open  bottom galvanised C 18 

   sheltered zincalume galvanised  11 

   Open  edges galvanised  18 
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Table 5.18 Comparison of Gutter Life by Model and other Methods 
Location  Component Case  Method  Life  

Marine  Unspecified position, galvanised Delphi 10 

Benign  Unspecified position galvanised Delphi  32 

Marine  Unspecified position Zincalume Delphi 21 

Benign  Unspecified position Zincalume Delphi  42 

Marine  Unspecified position galvanised Survey  15 

Benign Unspecified position galvanised Survey 55 

Benign Unspecified position zincalume Survey >40 

Marine Sheltered-galvanised Holistic Model 15 

Marine Internal Edge-galvanised Holistic Model 33 

Marine Internal –bottom –cleaned-galvanised Holistic Model 15 

Marine Internal –bottom –not cleaned-galvanised Holistic Model 14 

Benign Sheltered-galvanised Holistic Model 33 

Benign Internal Edge-galvanised Holistic Model >60 

Benign Internal –bottom –cleaned-galvanised Holistic Model 33 

Benign Internal –bottom –not cleaned-galvanised Holistic Model 7 

Marine Sheltered-zincalume Holistic Model 24 

Marine Internal Edge-zincalume Holistic Model 37 

Marine Internal –bottom –cleaned-zincalume Holistic Model 16 

Marine Internal –bottom –not cleaned-zincalume Holistic Model 5 

Benign Sheltered-zincalume Holistic Model 37 

Benign Internal Edge-zincalume Holistic Model 50 

Benign Internal –bottom –cleaned-zincalume Holistic Model 21 

Benign Internal –bottom –not cleaned-zincalume Holistic Model 13 

 

 

5.3 CBR Queensland Schools’ Gutter User Interface 
 

A GUI has been created to allow users to interrogate the CBR program developed for the 
gutters in the Queensland Schools application (Figure 5.18).  A subset of schools in the 
Southern coastal regions has been used in the program and can be accessed through a drop 
down menu.  A red cross will indicate the position on the map of Queensland.  If a school is 
not chosen, the map of Queensland can be used to select points within the state which will 
define the longitude and latitude. 

 

Dropdown menus have been incorporate to allow selection of gutter components and 
materials etc.  Check boxes define whether the component under consideration is 
Maintained, or Cleaned etc.  The search button at the bottom initiates the CBR engine and 
matching cases are retrieved and shown in the bottom right window, with the corresponding 
similarity index.  Database matches are also shown in the table to the left; all three gutter 
material types are listed.  A button at the bottom of the window can be used to get further 
details of the matching cases listed. 
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Figure 5.18 GUI developed for the Queensland schools' gutter application 

 

 
 

5.4 Utility of Present Results 
 

As demonstrated in Section 5.2.6 with the comparison of results from different sources, there 
is good correlation between the various methods.  However, before the modified holistic 
model is released commercially, it requires more verification and collection of data on 
maintenance and lifespans of gutters of the different materials. 
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6. QDMR APPLICATION 
 

Maintenance of bridge structures is a major issue for the Queensland Department of Main 
Roads so this was chosen as the focus of the application for this industry partner.  The 
general cases defined for the CBR engine are based around building components.  These 
are obviously not directly applicable to metallic components in bridges.  Therefore, any CBR 
driven program for corrosion in bridges will require the definition of bridge elements (relevant 
to bridges constructed in Queensland) to be used as the basis for case construction and 
comparison. 

 

Five representative bridge structures were provided by the QDMR and analysed. The five 
bridges are the Gladstone Port Access Road Overpass, Stewart Road Overpass, South 
Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge. Common 
elements were determined so that the results can be interpolated across the range of bridge 
types in Queensland.  This work is reported in detail in CRC Report 2002-059 No 9, Salt 
Deposition on Queensland Bridges, prepared by David Paterson. 

 

6.1 Analysis Methodology 
 

The salt deposition on the five representative bridge structures was computed using 
computational fluid dynamics (CFD). Upstream and ground boundary conditions were 
derived from the Geographical Information System (GIS) for salt deposition and metal 
corrosion in Australia. The results have been summarised by dividing by the deposition that 
would occur on a salt candle at the same location and by averaging over a set of physical 
locations (zones) on each bridge. 

 

6.1.1 Computation Method 
 

CFD is basically the solution of the conservation of mass and momentum equations on 
computer. The conservation of momentum in fluids is known as the Navier-Stokes equation. 
This is a partial differential equation with three vector components (x, y, z). The equations 
are solved in averaged form because the time-dependent details of turbulence can’t be 
resolved. This adds the term for the mean square turbulence into the momentum equations, 
and a turbulence model is used to solve for the mean square turbulence. 

 

In mathematics, the mean square turbulence is 3/2k , the turbulence intensity is 3/2k  
divided by the mean velocity, and the rate of dissipation of k  is called ε . The k-ε turbulence 
model is a very old model that has become the industry standard. It has two extra partial 
differential equations, one each for k  and ε . The Re-Normalisation Group (RNG) turbulence 
model is a more modern variant based on the mathematics of re-normalisation familiar from 
quantum mechanics. 

 

The solution of these partial differential equations was done using the commercial CFD 
program CFX 5.7. CFX 5.7 uses a finite volume analysis method with an unstructured grid. 
The finite volume method is similar to the finite-element method commonly used in structural 
engineering, but differs in enforcing exact conservation of convected quantities on pre-
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defined volumes/elements. Turbulence was computed using the k-ε model and this was 
compared with the RNG turbulence model for two bridges. 

 

For each bridge approximately 100,000 salt spray aerosol particles were released upstream 
of the bridge section and tracked using Lagrangian methods. Deposition rates in mg m-2 were 
calculated automatically from this by averaging over small elements of the bridge surface. 
Results were checked by trying a range of different aerosol release areas and release 
strategies (uniform vs random) for each bridge. 

 

The aerosol particles were assumed to be statistically random in diameter, with prescribed 
mean, standard deviation and the volume of the droplets was described by a normal 
distribution. This approach correctly simulates the total salt deposition without the need to 
model exorbitant numbers of very small particles.  

 

It was not assumed that the air flow over each bridge was free from vortex shedding, but that 
proved to be the case for each of the final simulations reported here. 

 

The assumed roughness of the concrete for each bridge is 0.3 mm. This only has a small 
influence on the deposition of salt on the bridge near the coast or when the relative humidity 
is high (as assumed here) because the moisture in the transported aerosol sticks the salt to 
the concrete. The assumed roughness has a large influence when the salt deposition rate is 
very low at low relative humidities (below 33%). 

 

6.1.2 Information Supplied by QDMR and extracted from the GIS 
 

The DMR supplied drawings and aerial photographs on each of the five bridges. They also 
supplied locations, latitude and longitude and environmental data for each bridge. The GIS 
provided the distance to the coast and the representative local vegetation height (allowing for 
urban development). 

 

Mean wind data is extracted from climatic information from the Australian Bureau of 
Meteorology. The data used is the morning and afternoon wind speeds and directions for the 
four seasons at adjacent weather stations. Sea breezes are accounted for by the difference 
between morning and afternoon data. 

  

The distance to the coast was also calculated from maps and atlases and compared with two 
different sets GIS data. For bridges within four kilometres of the coast there was often a 
significant discrepancy between the three figures, and the one thought to be most accurate 
was selected. 

 

The GIS database for vegetation contains the primary vegetation type, the fractional ground 
cover by this vegetation, and the understorey vegetation type. It also contains urban 
development details if they’re relevant. From this, algorithms developed at CSIRO were 
used, together with the mean wind velocity, to determine the wind velocity profile and 
turbulence intensity at each site. The vegetation was assumed to be of uniform height for the 
purposes of computation. 
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The bridge height above mean water level was used in conjunction with the wind velocity 
profile in setting the upstream wind speed and maximum turbulence length scale. 

 

The mean and standard deviation salt aerosol particle diameter were calculated from an 
algorithm developed at CSIRO based on the distance from the coast and the effect of the 
size of Australian weather systems on the length of the wind path. 

 

A constant relative humidity of 70% was used to calculate the density of the salt-containing 
aerosols. This is a typical relative humidity experienced in Queensland. 

 

6.1.3 Defining Common Elements 
 

The deposition of salt on any structure depends on two independent processes. The first is 
the transport of salt aerosol to the vicinity of the structure and the second is the effect of the 
shape of the structure on the deposition rate. The first of these can be measured by a salt 
candle. The salt deposition measured by a salt candle at any location can be reliably 
extracted from the GIS model of metallic corrosion. 

 

For each bridge, a separate computation was done of deposition on a salt candle at the 
same location. The ratio of the deposition on the bridge to that on the salt candle quantifies 
the effect of the shape of the structure on the deposition rate.  

For the comparison of different bridge superstructures, results were averaged over a set of 
physical locations (zones) on each bridge. These zones are shown for two typical bridge 
cross sections in Figure 6.1. 

 
Figure 6.1 The layout of zones on two typical bridge cross sections. 

 

1. Road surface and median 
strip 

2. Bridge undersurface 
3. Side face 
4. Handrails 
5. Side of support beams 
6. Undersurface of support 

beams 
7. Protected undersurface 
8. Lane divider and inside the 

parapet 
9. On top of the parapet and 

under the side overhang 
If the support beams are closer 
than 100 mm apart then "2" 
applies instead of "5, 6 and 7". 
 

 

The deposition rates in these zones can depend on the detailed bridge design.  Some zones 
will have similar deposition rates. 

 



 

  80

6.2 Analysis of the Five Bridges 
 

The five bridges are the Gladstone Port Access Road Overpass, Stewart Road Overpass, 
South Johnstone River Bridge, Johnson Creek Bridge, and Ward River Bridge (see Figure 
6.2). 

 
Figure 6.2 Locations of the five bridges analysed 

 

 
 

For the bridges described below, the abbreviation DSC means “times the deposition on a salt 
candle away from obstacles at the same location”.  Table 6.1 gives a summary of the 
computed results. For approximate Zone locations see Figure 6.1; for details see each bridge 
in turn. 

 

The salt deposition is influenced by the height to width ratio (H:W) of the superstructure. 
There is a critical H:W ratio, similar to that of the bridge over the Ward River, that maximises 
the salt deposition on the downwind side of the superstructure (Zone 3 landwards). The H:W 
ratio for the Johnson Creek Bridge is intermediate between that of the Stewart Road 
Overpass and the South Johnstone River Bridge and all use deck units; that explains why 
the deposition on Zone 2 for the Johnson Creek Bridge is intermediate between the other 
two. 
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Table 6.1 A summary of computed results; salt depositions on the 9 zones for the 5 bridges in DSC. u′/U is the 
upstream turbulence intensity and H:W is the height to width ratio of the superstructure. 

 Gladstone Stewart Sth Johnstone Johnson Ward 

u' / U 0.29 0.18 0.12 0.41 0.3 

 H:W 1:3.7 1:13.3 1:5.7 1:7.3 1:4.1 

1 0.65 0.19 0.79 0.36 1.13 

2  0.27 0.97 0.58 0.89 

3 seawards 1.30 1.47 1.46 1.66 1.22 

3 landwards 0.27 0.11 0.69 0.08 0.72 

3 average 0.79 0.79 1.08 0.87 0.97 

4   2.53 1.59  

5 0.38    0.37 

6 1.03    1.06 

7 0.18    0.87 

8 0.44 0.41 0.55 0.95 0.66 

Zone 

9 0.50 0.69 0.80 0.80 0.78 

 

The upstream turbulence intensity (u' / U) influences salt deposition in conjunction with the 
bridge roughness, the mean aerosol size and the relative humidity. For a smooth surface (eg. 
glass) with small aerosols (< 3 µm in diameter) the salt deposition rate can be so small as to 
be negligible. The same can be true when the relative humidity is low (< 33%).  In these 
computations the surface is assumed to be rough enough and the relative humidity high 
enough for salt deposition to occur. In this case the deposition rate depends critically on u' / 
U, particularly when the aerosols are small. However, the effect of u' / U affects both the 
bridge and salt candle so the DSC value is relatively unchanged. 

 

The salt deposition is also influenced by the structural details. For instance, the girders are 
further apart at Ward River than at Gladstone and this largely explains the difference in 
deposition between the girders (Zone 7). The high parapets on the Stewart Road Overpass 
help to explain the low deposition rate on the road surface there (Zone 1). 

 

6.2.1 Gladstone Port Access Road Overpass 
 

The Gladstone Port Access Road Overpass in Gladstone City is located at latitude 23°51’ 
and longitude 151°30’. It is on the Gladstone Port Access Road between Glenlyon Road and 
the Port Precinct and passes over the top of Auckland Street and the railway lines. There is 
ocean to the North, North East and East of this bridge. 

 

The bridge comprises twelve spans ranging in length from 28.4 metres to 37 metres. The 
superstructure consists of a reinforced concrete deck on rectangular prestressed concrete 
deck units for span 12 and on five T-ROFF trough-shaped prestressed concrete girders for 
spans 1 to 11. For these 11 spans the total width of the superstructure is 10.44 metres and 
the height is 2.81 metres, giving a height to width ratio of 1:3.7. 
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The salt deposition on the superstructure deck section for spans 3 to 5  and 9 to 11 was 
modelled on computer. This has a shorter parapet  than spans 1, 2, 6, 7 and 8.  In the 
second set of spans the salt deposition on the roadway is expected to be less because the 
road deck is protected by the higher parapet whereas the deposition on the underside is 
expected to be much the same. A preliminary computer simulation for spans 1, 2, 6, 7 and 8 
suggested that it may be associated with vortex shedding in some winds. 

 

The bridge height of the bridge deck in the centre spans varies from about 8.3 to 9.6 metres 
above ground level. In the simulations it is assumed to be 9.3 metres above ground level. 

 

The salt deposition on a salt candle, extracted from our GIS database at the location of 
Gladstone for a marine environment at the latitude and longitude given, is 13.3 mg.m-2.day-1.  
This does not take into account the bridge height.   

 

The deposition on the salt candle for each bridge was also computed. Tracks of 35 of the 
2678 particles that deposited on the salt candle for Gladstone are shown in Figure 6.3. In all, 
50,000 aerosol particles released upwind. The salt candle has a diameter of 25.4 mm. The 
flow domain is 300 mm long by 200 mm high. The grid contains 86,000 elements. It extends 
out of this plane a distance of 13 mm. 

 
Figure 6.3 Tracks of 35 particles deposited on a salt candle in the same flow conditions as those of the Gladstone 

Port Access Road Overpass. Wind flow is from left to right 

 
 

More salt is deposited on the front of the candle than the back. The cylindrical candle 
shelters the region directly downstream, leading to a low salt concentration in the air there. A 
pressure wave upstream of the cylinder increases the salt concentration there above ambient 
levels. 

 

Figure 6.4 shows the flow domain size and grid resolution used for simulation of wind flow 
around the superstructure of the Gladstone Port Access Road Overpass. The flow domain is 
35 metres long by 16 metres high. The flow is from left to right. The domain is extended in 
the downwind direction to stop the downwind boundary conditions on velocity and turbulence 
feeding back into the flow and altering the pressure distribution around the structure; this is 
standard practice. The grid is finer around the bridge. The grid contains 86,000 elements. It 
extends out of this plane a distance of 0.5 metres. 
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Figure 6.4 The flow domain size and grid resolution used for the superstructure of the Gladstone Port Access 
Road Overpass 

 

 
 

The deposition on the superstructure was checked using three different aerosol release 
strategies. In one aerosols were released directly upwind of the bridge, in the second they 
were released in bands above and below the bridge, in the third they were released over a 
broad area. Results for Gladstone are shown in Figure 6.5. The aerosol was diffused 
upstream due to turbulence. 

 

Figure 6.5a shows the volume fraction of salt of aerosols that were released just upstream of 
the bridge, within 1.4 metres of the mid-height. The salt is transported first to the leading side 
of the parapet and much salt is deposited there. The flow separates from the top of the 
parapet, leaving an open recirculation region (shown in blue) behind it over the bridge deck. 
The flow separating from the bottom edge of the parapet hits the lower portion of the first T-
ROFF girder. The flow separates again from the bottom of the first girder. 

 

In Figure 6.5a both the turbulence in the mean wind and that generated by the bridge itself 
slowly brings salt into the recirculation regions. Over the bridge deck, it is seen that this 
increases the deposition on the leeward side of the bridge deck. Salt becomes trapped in the 
recirculation regions between the bridge girders, but although the concentration of the salt in 
the air between the girders is high, not much of it is deposited on the girders and the 
underside of the deck. The turbulence also brings some salt back onto the back of the 
downwind parapet, but not much. 

 

Figure 6.5b shows the volume fraction of salt when aerosols were released between 1.4 and 
2.8 metres of mid-height. There is less deposition on the upwind side of the parapet because 
the high pressure there deflects the salt away. More salt is trapped in the recirculation region 
over the front of the bridge deck. More salt is trapped between the second and third bridge 
girder. 

 

Figure 6.5c shows the sum of the top two figures plus salt released further from mid-height. 
The locations of the recirculation regions are now less clear. Salt concentrations in the air are 
now seen to be highest behind three of the girders and the leading parapet but the actual 
depositions in these regions, as shown by the colours on the surfaces, is still quite low. 
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Figure 6.5 Volume fraction of salt around the superstructure of the Gladstone Port Access Road Overpass; a) 
particles released within 1.4 metres of the mid-height, b) particles were released between 1.4 and 2.8 
metres of mid-height, c) all salt aerosol particles. Flow is from left to right. Red is high concentration 
and blue is low concentration. 

 

a)  

b)  

c)  
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Figure 6.6 shows the locations of the zones used in analysing the deposition on the 
superstructure of the Gladstone Port Access Road Overpass. This is referred to in the 
subsequent graphs of salt deposition and in Table 6.1. 

 
Figure 6.6 The locations of the zones for the superstructure of the Gladstone Port Access Road Overpass 

 

 
 

Figure 6.7 shows the salt deposition on the Gladstone Port Access Road Overpass, 
measured relative to the salt candle deposition of 13.3 mg m-2 day-1 at the same location. In 
Figure 6.7a the line marked “top” includes Zones 1 and 8, i.e. the top of the bridge deck and 
the inside of the parapets. The deposition is highest on the inside face of the downwind 
parapet. The deposition on the top of the bridge deck reaches a maximum of about 0.95 
DSC in the middle of the deck, where DSC means “times the deposition on a salt candle 
away from obstacles at the same location”. 

 

The line marked “under” includes Zones 5, 6 and 7, i.e. the underside of the bridge deck and 
all sides of the trough-shaped girders. The spikes on the graph represent the greatest salt 
deposition on the upwind faces of the girders. These are largest near the bottom of the 
girders. The bottoms of the girders have a salt deposition comparable in magnitude to that on 
the top of the deck, e.g. that below the centre of the bridge has an average deposition of 1.2 
DSC. The deposition in the protected areas of the underside of the bridge deck between the 
girders varies from near zero in the downwind half of the superstructure to 0.55 DSC three 
metres upwind of the bridge centre. 

 

Figure 6.7b shows the salt deposition on the upwind face of the upwind parapet and the 
downwind face of the downwind parapet. That on the downwind (sheltered) face is about 
0.25 DSC. That on the upwind (exposed) face is largest near the bottom, larger than average 
near the top, and roughly 1.1 DSC between the two. 

 

To summarize the deposition on this superstructure, it is largest on upwind faces, 
intermediate on horizontal faces and least on downwind faces and in protected parts of the 
under bridge deck. The highest deposition rates of all are on the bottom edges of the two 
downwind girders and of the upwind face of the upwind parapet. 
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Figure 6.7 Salt deposition on the Gladstone Port Access Road overpass measured relative to the salt candle 
deposition 
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Gladstone Port Access Road Overpass Spans 3-5 and 9-11
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6.2.2 Stewart Road Overpass 
 

The Stewart Road Overpass in Gold Coast City is located at latitude 28°8’ and longitude 
153°27’. It is on the Pacific Highway at the northern end of the new Tugun Bypass in 
Currumbin. There is ocean to the North, North-East and East of this bridge.  The bridge has 
two spans of 21.8 metres.  The superstructure consists of a reinforced concrete deck on 45 
Type A prestressed concrete deck units. The units are laid with a nominal 35 mm gap. For 
the salt deposition simulation these deck units are taken together as a single unit but the 
gaps between them are used to together with concrete properties in estimating the 
aerodynamic roughness of the underside of the bridge. The superstructure is very wide with 
a total width of about 30.7 metres and the height is 2.3 metres, giving a height to width ratio 
of 1:13.3. 
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The height in the centre of the bridge deck is assumed to be 8.0 metres above ground level 
in the computer simulations of salt deposition. 

 

The salt deposition on a salt candle was extracted from our GIS database at the location of 
the bridge for a marine environment at the latitude and longitude given, 38.9 mg.m-2.day-1.  
This does not take into account the bridge height.   

 

The analysis of wind flow and salt deposition was carried out in a similar manner to the 
previous bridge and the results for the Stewart Road Overpass are shown in Figure 6.8. 

 

Figure 6.8a shows the volume fraction of salt of aerosols that were released well upstream of 
the bridge, within 1.2 metres of the mid-height. The salt is transported first to the leading side 
of the parapet and much salt is deposited there. The flow separates from the top of the 
parapet, leaving an open recirculation region (shown in blue) behind it over the first barrier 
and the front portion of the bridge deck. The flow separating from the bottom edge of the 
parapet hits the lower portion of the first prestressed concrete deck unit. The salt-containing 
flow separates again from the bottom of this deck unit but reattaches a short distance along 
the underside of the deck. 

 

In Figure 6.8a, both the turbulence in the mean wind and that generated by the bridge itself 
slowly brings salt into the recirculation regions. Over and under the leeward side of the 
bridge deck, the salt moves into the boundary layer and builds up there to high 
concentrations. There is a second separation from the top of the leeward parapet and from 
the bottom of the last deck unit, leading to low salt concentrations downwind. The turbulence 
brings very little salt back onto the back of the downwind parapet. 

 

Figure 6.8b shows the volume fraction of salt when aerosols were released between 1.2 and 
2.4 metres of mid-height. There is very little difference between this and the top figure 
because turbulence upstream of the bridge has diffused the salt. There is less deposition on 
the upwind side of the parapet. More salt is trapped in the recirculation region over the front 
of the bridge deck. There is less salt deposition on the underside of the bridge deck. 

 

Figure 6.8c shows the sum of the top two figures plus salt released further from mid-height. 
Salt concentrations in the air are seen to be lowest between the leading parapet and the first 
barrier, downwind of the superstructure, under the front of the bridge deck and under the 
front parapet. Salt concentrations in the air are seen to be highest above the downwind end 
of the deck, behind the barrier above the deck, and under the downwind end of the deck. 
High salt concentrations in the air do not necessarily correspond to high deposition rates. 
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Figure 6.8 Volume fraction of salt around the superstructure of the Stewart Road overpass; a) particles released 
within 1.4 m of the mid-height, b) particles released between 1.4m and 2.8m of mid-height, c) all salt 
aerosol particles.  Flow is from left to right. Red is a high concentration of salt, blue is low 
concentration. 

 

a)  

b)  

c)  

 

 

Figure 6.9 shows the locations of the zones used in analysing the deposition on the 
superstructure of the Stewart Road Overpass. This is referred to in the subsequent graphs of 
salt deposition and in Table 6.1. 

 
Figure 6.9 Locations of the zones for the superstructure of the Stewart Road overpass 
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Figure 6.10 shows the salt deposition on the Stewart Road Overpass, measured relative to 
the salt candle deposition of 38.9 mg m-2 day-1 at the same location. The line marked “top”  
includes Zones 1 and 8, i.e. the top of the bridge deck, the inside of the parapets and both 
sides of the barrier. The deposition is highest in three places: on the inside face of the 
downwind parapet, on the upwind side of the median strip, and on the upwind side of the 
barrier. The deposition on the top of the bridge deck reaches a maximum of about 0.95 DSC 
ten metres upwind of the centre of the median strip. It is thus well upwind of the bridge 
centre; the high salt intensity in the air above the downwind end of the bridge deck (Figure 
6.9a) does not lead to high deposition rates there. 

 

The line marked “under” includes Zone 2, i.e. the underside of the bridge deck units. The 
greatest salt deposition is near the front edge of the upwind deck unit. The deposition on the 
underside of the deck is comparable in magnitude and position to that on the top of the deck. 

 

Figure 6.10b shows the salt deposition on the upwind face of the upwind parapet and deck 
unit, and the downwind face of the downwind parapet and deck unit. That on the downwind 
(sheltered) face is about 0.2 DSC for the parapet and less for the deck unit. That on the 
upwind (exposed) face is largest near the bottom, larger than average near the top, roughly 
1.5 DSC at the bottom of the parapet and smaller in the protected area at the top of the deck 
unit. 

 

To summarize the deposition on this superstructure, it is largest on upwind faces including 
the upwind face of the median strip, and smallest in the downwind parts of the bridge deck, 
particularly on the back of the last deck unit. [No attempt was made to model the gaps 
between the deck units; it is expected that the salt deposition there will be very small]. 

 

6.2.3 South Johnstone River Bridge 
 

The South Johnstone River Bridge in the Johnstone Shire south of Innisfail is located at 
latitude 17°40’ and longitude 146°5’. It is on the Innisfail-Japoon Road. There is ocean to the 
East of this bridge. 

 

The bridge has five spans, each about 25 metres long. The superstructure rests on 
rectangular prestressed concrete deck units. 17 units are spaced apart for spans 1 and 2 and 
support a reinforced concrete deck. 15 units are tied together for spans 3, 4 and 5. The 
bridge has a two-bar traffic rail on each side. The computer simulation of deposition is for the 
superstructure in spans 3, 4 and 5. This part of the superstructure has an overall width of 9.4 
metres and the height including the two bars of the traffic rail is 1.65 metres, giving a height 
to width ratio of 1:5.7. 
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Figure 6.10 Salt deposition on the Stewart Road Overpass measured relative to the salt candle deposition 
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b) 

 

The height in the centre of the bridge deck is assumed to be 10.9 metres above water level 
in the computer simulations of salt deposition. This is consistent with the height of the centre 
span. 

 

The salt deposition on a salt candle was extracted from our GIS database at the latitude and 
longitude given. If this is taken as a “marine” environment then the salt deposition is 10.0 mg 
m-2 day-1. For a non-marine environment it is 6.7 mg m-2 day-1. The deposition on the salt 
candle for this bridge was also computed. 
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The results of the salt deposition analysis for the South Johnstone River Bridge are 
illustrated in Figure 6.11. 

 

Figure 6.11a shows the volume fraction of salt of aerosols that were released just upstream 
of the bridge, within 1.2 metres of the mid-height. The salt is transported first to the leading 
side of the deck and much salt is deposited there. A lot of salt is also deposited on the front 
sides of the two upwind traffic rails. There is little flow separation from the bottom of the 
upwind deck unit, from the top of the deck and behind the traffic rails. The top and the bottom 
of the deck are slightly sheltered. The downwind traffic rails are collecting some salt. 
Turbulence brings a little salt back onto the downwind end of the deck. 

 

There are clear differences between the top and middle figures. Figure 6.11b shows the 
volume fraction of salt when aerosols were released between 1.2 and 2.4 metres of mid-
height. This salt misses the upwind end of the deck and upwind traffic rails almost 
completely, although some is deposited on the downwind half of the deck and on the 
downwind traffic rails. Turbulence brings more salt back onto the downwind end of the deck. 

 

Figure 6.11c shows the sum of the top two figures plus salt released further from mid-height. 
Salt concentrations in the air are seen to be lowest above the deck, below the leading third of 
the deck, behind the traffic rails, and downwind of the bridge. Salt concentrations in the air 
are seen to be highest on the upwind side of the deck and in front of and above the upwind 
traffic rails. 

 

Figure 6.12 shows the locations of the zones used in analysing the deposition on the 
superstructure of the Stewart Road Overpass. This is referred to in the subsequent graphs of 
salt deposition and in Table 6.1. 

 

Figure 6.13a shows the salt deposition on superstructure of the South Johnstone River 
Bridge, measured relative to the salt candle deposition of 6.7 or 10 mg m-2 day-1 (see above 
for details) at the same location. The deposition on the traffic rails is not included in the 
figure, the average over all traffic rails is a very high 2.53 DSC. The line marked “top” 
includes Zones 1 and 8, i.e. the top of the bridge deck and kerbs. The deposition is fairly 
uniform, averaging about 0.9 DSC over the downwind half, with a small spike on the 
downwind kerb. 

 

The line marked “under” includes Zone 2, i.e. the underside of the bridge deck units. The 
greatest salt deposition is near the front edge of the upwind deck unit this then drops off 
rapidly to zero before increasing to a fairly uniform value of about 1.1 DSC. 

 

Figure 6.13b shows the salt deposition on the upwind and downwind sides of the deck. There 
is an unimportant discontinuity at height zero at the boundary between the deck unit and the 
reinforced concrete above. That on the downwind face is remarkably high, peaking at 1.0 
DSC on the deck unit. That on the upwind (exposed) face is largest near the top, going up to 
approximately four times the salt candle. At the bottom it climbs to three times. In the middle 
it averages something like one times. 
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Figure 6.11 Volume fraction of salt around the superstructure of the South Johnstone River Bridge; a) particles 
released within 1.4 metres of the mid-height, b) particles were released between 1.4 and 2.8 metres of 
mid-height, c) all salt aerosol particles. 

 

a)  

b)  

c)  
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Figure 6.12 Locations of the zones for the superstructure of South Johnstone River Bridge 

 

 
 

Figure 6.13 Salt deposition relative to that on a salt candle for the South Johnstone River Bridge 
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To summarize the deposition on this superstructure, it is particularly large on the bottom and 
top of the upwind face, going up to about four times the salt candle. The average deposition 
on the traffic rails is also large, about two and a half times that on a salt candle. The 
deposition on the top of the deck is slightly larger than that on the bottom and there is a 
remarkably high deposition rate on the downwind side of the deck. 

 

6.2.4 Johnson Creek Bridge 
 

The Johnson Creek Bridge in Mount Isa City is located at latitude 20°40’ and longitude 
139°25’. It is on the Barkly Highway between Mt Isa and Camooweal. It is well inland and not 
near any ocean. The bridge has three uneven spans, the centre span is the longest at 18 
metres long. The superstructure consists of a reinforced concrete deck on rectangular 
prestressed concrete deck units. There are 15 deck units, placed with a nominal 25 mm 
gaps. The bridge has a two-bar traffic rail on each side. The superstructure has an overall 
width of 10 metres and the height including the two bars of the traffic rail is 1.37 metres, 
giving a height to width ratio of 1:7.3. 

The height in the centre of the bridge deck is assumed to be 5.6 metres above ground level 
in the computer simulations of salt deposition. 

 

The salt deposition on a salt candle was extracted from our GIS database at the location of 
the bridge at latitude and longitude given. It is 3.8mg.m-2.day-1. The deposition on the salt 
candle for this bridge was also computed. 

 

Concentrations of salt in the air for the Johnson Creek Bridge are shown in Figure 6.14. 

 

Figure 6.14a shows the volume fraction of salt of aerosols that were released upstream of 
the bridge, within one metre of the mid-height. The salt is transported first to the leading side 
of the deck and much salt is deposited there. A lot of salt is also deposited on the front sides 
of the two upwind traffic rails. Flow separation from the bottom of the upwind side of the deck 
affects deposition on the upwind concrete deck unit. There is a little flow separation from the 
bottom of the upwind deck unit, from the top of the deck and behind the traffic rails. The top 
and the bottom of the deck are slightly sheltered, but turbulence brings salt back into contact 
with the downwind half. The downwind traffic rails are collecting some salt. Turbulence brings 
some salt back onto the downwind end of the deck. 

 

Figure 6.14b shows the volume fraction of salt when aerosols were released between one 
and two metres of mid-height. There is not much difference between this and Figure 6.14a. 
There is less deposition on the upwind side top and bottom of the deck. 

 

Figure 6.14c shows the sum of the top two figures plus salt released further from mid-height. 
Salt concentrations in the air are seen to be lowest above the upwind end of the deck, below 
the leading end of the deck, behind the traffic rails, and downwind of the bridge. Salt 
concentrations in the air are seen to be highest above and below the downwind ends of the 
deck. 
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Figure 6.14 Volume fraction of salt around the superstructure of the Johnson Creek Bridge; a) particles released 
within 1.4 m of the mid-height, b) particles released between 1.4m and 2.8m of mid-height, c) all salt 
aerosol particles.  Flow is from left to right. 

 

a)  

b)  

c)  

 

Figure 6.15 shows the locations of the zones used in analysing the deposition on the 
superstructure of the Stewart Road Overpass. This is referred to in the subsequent graphs of 
salt deposition and in the table from Section 3. 

 
Figure 6.15 Location of zones for the superstructure of the Johnson Creek Bridge 
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Figure 6.16 shows the salt deposition on the superstructure of the Johnson Creek Bridge, 
measured relative to the salt candle deposition of 3.8 mg m-2 day-1. The deposition is seen to 
be intermediate in distribution between that on the Stewart Road Overpass (in which 
deposition drops to near zero at the downwind end of the deck) and on the South Johnstone 
River Bridge (where the deposition is nearly constant. This is because the height to width 
ratio of the Johnson Creek Bridge deck is 1:7.3, which is between those of the other two 
bridges (1:13.3 and 1:5.7). 

 

The line marked “top” includes Zones 1 and 8, i.e. the top of the bridge deck and kerbs. The 
deposition decays from a maximum of 0.6 DSC to a minimum of about 0.2 DSC, with a large 
spike on the downwind kerb.  

 

The line marked “under” includes Zone 2, i.e. the underside of the bridge deck units. The 
greatest salt deposition is near the front edge of the upwind deck unit this then drops off and 
rapidly rises again to a maximum of 1.2 DSC before reducing slowly to a minimum of about 
0.2 DSC.  

 

Figure 6.16b shows the salt deposition on the upwind face and deck unit, and the downwind 
face and deck unit. The pattern of deposition closely resembles at of the Stewart Road 
Overpass, because the geometry is similar. The deposition on the downwind (sheltered) face 
is about 0.15 DSC for the parapet and less for the deck unit. That on the upwind (exposed) 
face is largest near the top at about 2.8 DSC, larger than average near the bottom at 2.35 
DSC, roughly 1.8 DSC at the bottom of the upwind face and smaller in the protected area at 
the top of the leading deck unit. 

 

6.2.5 Bridge over Ward River 
 

The bridge over the Ward River in Murweh Shire is located at latitude 26°30’ and longitude 
146°15’. It is on the Diamantina Developmental Road between Charleville and Quilpie. 

 

The bridge has six spans, each about 13.6 metres long. The superstructure consists of a 
reinforced concrete deck on two steel I-beams. It has a total width of 4.27 metres and the 
height including girders is 1.05 metres, giving a height to width ratio of 1:4.1. 

 

The salt deposition on a salt candle was extracted from our GIS database at the latitude and 
longitude given.  It is 3.9 mg.m-2.day-1. The deposition on the salt candle for this bridge was 
also computed. 

 

Concentrations of salt in the air for the bridge over the Ward River are shown in Figure 6.17. 
The distribution of salt in the air is remarkably symmetric; it is not immediately obvious that 
the wind from is from left to right. As on the other bridges, there is a reasonable amount of 
deposition on the upwind face and flow separation above and below, but this time the salt 
deposition on the bottom of the front of the leading girder is not very large. 
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Figure 6.16 Salt deposition relative to that on a salt candle for the Johnson Creek Bridge 
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Figure 6.17 Distribution of salt for the Ward River Bridge 

 

 
 

 

There is a big recirculation zone between the girders and salt hangs around in the low 
velocity regions behind both girders. The superstructure height to width ratio is large enough 
(1:4.1) to bring large amounts of salt into the area downwind of the bridge. The region above 
the deck behaves as expected, salt is brought down to the road surface by turbulence. 

 

Figure 6.18 shows the locations of the zones used in analysing the deposition on the 
superstructure of the Stewart Road Overpass. This is referred to Table 6.1. 

 
Figure 6.18 Locations of zones for the Ward River Bridge 
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Figure 6.19 shows the salt deposition on the deck, kerbs and the top flanges of the steel 
girders of the bridge over the Ward River, measured relative to the salt candle deposition of 
3.9 mg m-2 day-1. As for the the South Johnson River Bridge, the salt deposition on the top of 
the deck is fairly uniform, but larger here at about 1.3 DSC for much of the deck. The salt 
deposition under the deck is not too different from that above, it is sheltered near where the 
girders intersect the deck, but not midway between the girders or further downwind. 

 
Figure 6.19 Salt deposition relative to that on salt candle for the deck of the Ward River Bridge 
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As before, the salt deposition on the upwind face of the deck is largest at the top and bottom, 
with peak values of about 1.9 DSC and reducing to about 1.0 DSC at mid height. The salt 
deposition on the downwind face of the deck is remarkably large, ranging from an average of 
about 0.5 DSC over the upper half to a maximum of about 1.5 DSC at the lower edge. 

 

Figure 6.20 shows the salt deposition on the webs and lower flanges of the steel girders of 
the bridge over the Ward River, measured relative to the salt candle deposition. The bottom 
of the flange of the downwind girder has the largest salt deposition of the whole bridge, rising 
to about a peak of about 2.9 DSC. This is the reattachment zone for the recirculation region 
separating from the upwind girder, and has a high local turbulence that aids deposition. The 
top of this flange, by way of contrast, has a low deposition rate. 

 
Figure 6.20 Salt deposition relative to that on salt candle for the girders of the Ward River Bridge 
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The leading edge of the top of the flange of the upwind girder has a high deposition rate, 
peaking at about 1.7 DSC. This is expected as it catches the salt coming off the front of the 
bridge. 

 

For the webs of the girders, the front of the upwind girder has the largest salt deposition rate 
and the back of that girder has the smallest. None have a particularly large deposition rate, 
with only one point above 1.0 DSC. 

 

6.3 Program and User Interface 
 

The information derived from the analysis of the five bridges was amalgamated to give a 
generic bridge structure with nine different zones as shown in Figure 6.1. Salt factors were 
derived for each zone to modify the salt deposition levels.  A GUI has been designed and 
implemented incorporating the GIS of Queensland such that clicking on a point on the map 
will get the salt deposition for that point. (Figure 6.21) One of the nine bridge zones can then 
be selected and the expected salt deposition on that zone will be calculated from the GIS 
figure and the salt factor for the zone. 

 
Figure 6.21 Initial Screen in Bridge program allowing selection of point in Queensland 
 

 
 
 

Two examples of the bridge zones being selected in the GUI are illustrated in Figure 6.22. 
(The zoom facility in the GIS map is also illustrated). 
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Figure 6.22 Two frames of the GUI showing different bridge zones selected 

 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4 Utility of Present Results 
 

These results represent the first step towards developing a CBR program for life prediction of 
metallic bridge elements.  Cases for two typical bridge types have been derived from CFD 
modelling of salt deposition.  The salt values provided by the program have not been verified 
against actual deposition on the bridges (there was no provision for verification in the project 
program). 
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7. SITE VISIT 
 

As part of this project a trip was undertaken to look at corrosion concerns of the industrial 
partners in the context of the software tools being developed.  David Paterson and Wayne 
Ganther from CSIRO travelled to the Sunshine Coast with Alan Carse of Queensland 
Department of Main Roads and Michael Ball of Queensland Department of Public Works. 
They were joined for part of the visits by Ed Bowers of QBuild which is the commercial unit of 
Public Works responsible for maintenance of the buildings and infrastructure supported by 
the department. The Sunshine Coast area was chosen for the visit due its coastal location 
and known corrosion problems. 

 

A detailed summary of the visit is given in two reports prepared by Wayne Ganther: 

• Trip to Sunshine Coast Queensland, September 2004, Visit to Schools, Report No 
2002-059-B No 7, and, 

• Trip to Sunshine Coast Queensland, September 2004, Visit to Bridge and Foreshore, 
Report No 2002-059-B No 8. 

 

7.1 Visit to Schools 
 

Four schools were visited on the Sunshine Coast in the area shown by the maps in Figure 
7.1.   
Figure 7.1 Maps showing the location of the schools visited 

 

 
 

The four schools were: 

• Currimundi State School, located within a couple of hundred metres of Dicky Beach, 
The school opened in 1977 and the buildings are between 4 and 12 years old, 
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•  Currimundi Special School, located across the road from the State School. The 
school was opened in 1984.  

• Talara Primary College, located approximately 2 kilometres from the coast (Dicky 
Beach) almost directly west of the Currimundi schools. The school was opened in 
1998 and Block E was only opened in 2004. and  

• Kawana Waters State High School, located approximately 1 kilometre from the coast 
and approximately 4 kilometres north of Currimundi. The school was opened in 1986. 

 

All of the schools have significant corrosion problems. Most of the corrosion issues relate to 
sheltered corrosion and have been seen in similar structures in Victoria. The main structures 
affected are covered walkways and shelters ie. all areas where salt can be deposited and is 
not washed away by rainfall. Another problem is roof fasteners which have corroded; this 
may be due to inappropriate specifications as some fasteners were stainless steel and 
performing well. Other corrosion problems are due to inappropriate design, specifications or 
building practice.  Some of the problems identified are illustrated in Figure 7.2 to Figure 7.9. 

 
Figure 7.2 Rusting and deterioration at joins of gutters at Currimundi State School 

 

 

 
Figure 7.3 Roof fasteners showing evidence of rust at Currimundi State School 
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Figure 7.4 Contact between stainless steel strapping and Colorbond® roof is causing deterioration of 
Colorbond®.  Strapping not in contact is showing considerable corrosion (Currimundi Special School) 

 

 
 
Figure 7.5 Triple grips and bolts on covered setdown showing evidence of red rust at Currimundi Special School 

 

 
 

 
Figure 7.6 Fasteners in sheeting under porch of Administration block at Talara Primary College 
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Figure 7.7 Degradation of gutter at join to drainpipe at Talara Primary College.  Pop rivets have corroded away. 

 

 
 
Figure 7.8 Underside of aluminium roof sheeting of covered walkway at Kawana Waters State High School 

 

 
 
Figure 7.9 Heavily corroded fastener in walkway at Kawana Waters State High School 
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7.2 Bridge and Foreshore Visit 
 

The project group also visited a bridge on the David Low Way (Figure 7.10) at Sunrise Beach 
near Noosa. This bridge was in a severe marine environment (Figure 7.11) with high salt 
content in the concrete and corrosion of the galvanised handrails and barriers.  

 
Figure 7.10 Bridge on the David Low Way 

 

 
 

Figure 7.11 View from the bridge showing proximity to the beach 

 

 
 

Some of the corrosion problems identified on the bridge structure are illustrated in Figure 
7.12 and Figure 7.13. 
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Figure 7.12 Corrosion on support beam of bridge 

 

 
 
Figure 7.13 White corrosion product on bridge railing 

 

 
 

An area on the foreshore near Noosa was also visited to have a look at how severe the coast 
was in terms of corrosion.  Structures along the coast were inspected to see how they were 
fairing in the environment. It was found that some, if not most, of the infrastructure installed 
along the coast was incorrectly specified. Some of the components used were not suitable 
for the severity of the environment eg. the supports for the shade umbrellas were painted 
steel which was severely corroded after a short exposure (Figure 7.14). Where more 
resistant metals were specified they were not fully specified. The stainless steel handrails 
and plaques were a case in point where the level of finish would seem to be not correctly 
specified. The stainless steel had excessive "tea staining" (Figure 7.15) which would have 
been avoided if electropolishing had been specified. 
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Figure 7.14 Umbrella supports showing severe corrosion 

 

 
 

 
Figure 7.15 Plaque showing "tea staining" from corrosion 
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8. FUTURE DIRECTIONS 
 

This project has scoped out the applicability of a case-based reasoning paradigm for a 
software tool for lifetime prediction of metallic building components.  Two applications have 
been developed, one more advanced than the other.  In the application for QDPW, the focus 
was gutters in Queensland schools.  A CBR engine has been designed and parts of it have 
been implemented in conjunction with the development of relevant databases of component 
life.  The CSIRO holistic model has been modified to include the materials of relevance to 
gutters, including Colorbond®.  In the application for QDMR the focus was metallic elements 
of bridges in Queensland.  This required analysis of bridge structures to define structural 
elements in common that would be used as cases in a case-based situation and has been 
used to predict salinity levels for these cases. 

 

8.1 CBR Engine 
 

These software applications require further development to generate a commercially usable 
product.  The design of the CBR engine is such as to allow the development of a 
comprehensive tool that can span a wide range of materials and a variety of environments, 
covering buildings, constructed facilities and infrastructure. The current tools have been 
developed as proof of concept with a very limited field of application.  

Some modification of the case-based reasoning program will also be necessary to fully 
implement an inference engine and optimise the selection of cases and construct the final 
case input values from the alternatives retrieved from the databases.  At present, the CBR 
can interrogate the various databases and select cases considered to be relevant to a given 
situation.  There is no process for selecting which of the retrieved information should be 
stored as a new case. 

 

8.2 Building Applications 
 

The QDPW application could be extended into consideration of the whole building façade 
including roofs, gutters, drainpipes, windows and other metallic components. Air conditioning 
components also constitute an area where significant corrosion is an issue for facility 
managers and inclusion of this could provide benefits.  As was done for gutters, cleaning 
models would need to be developed for different components, utilising CFD and water flow 
analysis, to facilitate modification of the salt deposition levels in the holistic model. 

One important aspect in any program extension would be to ensure that nomenclature of 
components was consistent with other areas of design and Life Cycle Analysis so that the 
final tool could provide input to these processes.  LCA workers use the definitions in the 
Australian Cost Management Manual. 

These tools are dependent on the integrity of the data in the various databases.  Information 
based on maintenance is of high importance in that it gives real data on the lifetime of 
components in actual situations. (In contrast to expert’s opinions in the Delphi survey or 
results from modelling)  A limited amount of data was received from QDPW and entered into 
a “Maintenance” database.  It would be very useful to have some means of updating this 
database to reflect the knowledge accumulation as maintenance proceeds.  As the system is 
currently designed, only the casebase is capable of being updated with new cases, derived 
from the databases already included, and there is no interface for ongoing input of new 
maintenance data.  To increase the utility of the programs then methods need to be found for 
ongoing updating of, particularly, the maintenance database. 
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8.3 Bridge Application 
 
The work done to date has not linked the bridge information into the CBR engine.  Initial 
analysis has been carried out to identify the structural elements for cases and the current 
environmental setting can be extended lifetime prediction and risk assessment, with the 
development of relevant databases and incorporation into the CBR engine. Two other areas 
of interest to QDMR are below ground corrosion modelling and the extension of the program 
to include other materials, in particular concrete. 
 
The lifetime prediction tool for bridges will be developed by forming databases of 
maintenance information and the model data from the CFD analysis.  Parameters relevant to 
below-ground metal corrosion will be identified and the model adapted accordingly.  For 
extension to concrete, the existing CSIRO and international work on modelling concrete 
degradation will be reviewed to determine the most appropriate algorithms. 
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10. GLOSSARY 
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11. APPENDICES 
 

Appendix I  Example of Delphi Database 
 

An example of the information stored in the Delphi database is given.  This is a subset of 
information for over 30 building components. 

 



 

  117 

 
Building 
Type 

Component Measure Environment Material Maintenance Mode 
(years) 

SD 
(years) 

Mean 
(Years) 

Criteria 

Commercial Gutters Service Life Marine Galvanised Steel No 5-10 5 9 2 

Commercial Gutters Time to First Maintenance Marine Galvanised Steel Yes <5 4 6 2 

Commercial Gutters Aesthetic Life Marine Galvanised Steel Yes 10-15 6 11 2 

Commercial Gutters Service Life Industrial Galvanised Steel Yes 10-15 9 15 2 

Commercial Gutters Service Life Industrial Galvanised Steel No 5-10 5 10 2 

Commercial Gutters Time to First Maintenance Industrial Galvanised Steel Yes 5-10 5 8 2 

Commercial Gutters Aesthetic Life Industrial Galvanised Steel Yes 5-10 6 10 2 

Commercial Gutters Service Life Benign Galvanised Steel Yes 30-50 16 32 2 

Commercial Gutters Time to First Maintenance Benign Galvanised Steel Yes 10-15 15 17 2 

Commercial Gutters Aesthetic Life Benign Galvanised Steel Yes 20-30- 13 22 2 

Commercial Gutters Service Life Marine Colorbond® No 5-10 12 18 2 

Commercial Gutters Time to First Maintenance Marine Colorbond® Yes 5-10 7 10 2 

Commercial Gutters Service Life Industrial Colorbond® Yes 15-20 14 26 2 

Commercial Gutters Service Life Industrial Colorbond® No 10-15 12 21 2 

Commercial Gutters Time to First Maintenance Industrial Colorbond® Yes 5-10 7 12 2 

Commercial Gutters Aesthetic Life Industrial Colorbond® Yes 15-20 10 17 2 

Commercial Gutters Service Life Benign Colorbond® Yes 30-50 16 36 2 

Commercial Gutters Service Life Benign Colorbond® No 30-50 16 35 2 

Commercial Gutters Aesthetic Life Benign Colorbond® Yes 30-50 14 29 2 

Commercial Gutters Service Life Marine Zincalume No 10-15 11 15 2 

Commercial Gutters Time to First Maintenance Marine Zincalume Yes 5-10 8 10 2 

Commercial Gutters Service Life Industrial Zincalume Yes 15-20 10 24 2 
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Appendix II Example of Maintenance Database 
 

An example of the information stored in Maintenance Database is given. 
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Centre 
Code CentreName 

Long 
Deg 

Lat 
Deg 

<10
km CaseLocation 

Dist 
From 
Case 

Case 
Long 

Case 
Lat Material 

Service 
Life 

(years) 
No of 
Cases 

801 Aitkenvale State School 146.76 
-

19.29 1 VINCENT 1.0 146.77 
-

19.28 GAL/ZINC (UNPAINTED) 33.6 29 

801 Aitkenvale State School 146.76 
-

19.29 1 VINCENT 1.0 146.77 
-

19.28 COLOURBOND 38.0 1 

801 Aitkenvale State School 146.76 
-

19.29 1 VINCENT 1.0 146.77 
-

19.28 GAL/ZINC (PAINTED) 38.8 164 

190 Albany Creek State School 152.97 
-

27.34 1 ACACIA RIDGE 4.6 153.02 
-

27.35 GAL/ZINC (PAINTED) 42.6 8 

190 Albany Creek State School 152.97 
-

27.34 1 ACACIA RIDGE 4.6 153.02 
-

27.35 GAL/ZINC (UNPAINTED) 43.0 1 

190 Albany Creek State School 152.97 
-

27.34 1 ACACIA RIDGE 4.6 153.02 
-

27.35 ALUMINIUM 52.2 29 

190 Albany Creek State School 152.97 
-

27.34 1 ACACIA RIDGE 4.6 153.02 
-

27.35 COLOURBOND 45.0 1 

1892 Albany Hills State School 152.97 
-

27.35 1 ACACIA RIDGE 4.4 153.02 
-

27.35 GAL/ZINC (PAINTED) 42.6 8 

1892 Albany Hills State School 152.97 
-

27.35 1 ACACIA RIDGE 4.4 153.02 
-

27.35 GAL/ZINC (UNPAINTED) 43.0 1 

1892 Albany Hills State School 152.97 
-

27.35 1 ACACIA RIDGE 4.4 153.02 
-

27.35 ALUMINIUM 52.2 29 

1892 Albany Hills State School 152.97 
-

27.35 1 ACACIA RIDGE 4.4 153.02 
-

27.35 COLOURBOND 45.0 1 

38 Albert State School 152.7 
-

25.54 0 NEWTOWN 0.7 152.70 
-

25.53 GAL/ZINC (UNPAINTED) 44.3 6 

2017 Aldridge State High School 152.68 
-

25.51 0 MARYBOROUGH 3.0 152.70 
-

25.53 GAL/ZINC (PAINTED) 53.0 8 

2206 
Allenstown Special 
Education Unit 150.5 

-
23.39 0 

NORTH 
ROCKHAMPTON 1.9 150.52 

-
23.38 GAL/ZINC (UNPAINTED) 33.8 46 

2206 
Allenstown Special 
Education Unit 150.5 

-
23.39 0 

NORTH 
ROCKHAMPTON 1.9 150.52 

-
23.38 COLOURBOND 27.0 1 
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2206 
Allenstown Special 
Education Unit 150.5 

-
23.39 0 

NORTH 
ROCKHAMPTON 1.9 150.52 

-
23.38 GAL/ZINC (PAINTED) 41.8 13 

155 Allenstown State School 150.5 
-

23.39 0 
NORTH 
ROCKHAMPTON 1.9 150.52 

-
23.38 GAL/ZINC (UNPAINTED) 33.8 46 

155 Allenstown State School 150.5 
-

23.39 0 
NORTH 
ROCKHAMPTON 1.9 150.52 

-
23.38 COLOURBOND 27.0 1 

155 Allenstown State School 150.5 
-

23.39 0 
NORTH 
ROCKHAMPTON 1.9 150.52 

-
23.38 GAL/ZINC (PAINTED) 41.8 13 
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Appendix III Computation of distance between two points on the 
Earth’s surface 

 

The distance, D, between two points on the surface on the earth is computed by the following 
formula: 
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where: 
 

the location of the first point is given by (longitude1, latitude1); 
the location of the second point is given by (longitude2, latitude2); 
and longitudes and latitudes are measure in decimal degrees; 
R is the radius of the earth taken as 6378.7 km. 
 

To convert latitude or longitude from decimal degrees to radians, the latitude and 

longitude values are divided by 2956.57180
≈

π
 (taking π to be 3.1416). 
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Appendix IV Java Classes for CBR code 
 

 Package    Class  Tree  Deprecated Index Help 
 
 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes  
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD 

 

Class ComponentLifeCase 
 
java.lang.Object 
  ComponentLifeCase 
All Implemented Interfaces:  

ComponentLifeSubCase, java.io.Serializable 

 
public class ComponentLifeCase 

extends java.lang.Object 

implements java.io.Serializable, ComponentLifeSubCase 

See Also: 
Serialized Form 

 

Constructor Summary 

ComponentLifeCase()  
          Creates a new instance of ComponentLifeCase 

ComponentLifeCase(java.lang.String name, 
ComponentLifeTableInput tableInput, 
ComponentLifeUserInput initialInputData, java.util.Date timeStamp)
          Creates a new instance of ComponentLifeCase 

ComponentLifeCase(java.lang.String id, java.util.Date timeStamp, 
ComponentLifeUserInput initialInputData, java.util.Vector alternatives, 
ComponentLifeUserInput finalInputData, java.lang.String module, 
double value, double similarityIndex, 
ComponentLifeTableInput similarityTable)  
          Creates a new instance of ComponentLifeCase 

   

Method Summary 

 void displayContents(int prefixNumOfTabs)  
          Displays the contents of the case. 

 java.util.Vector getAlternatives()  
          Getter for property alternatives. 
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 double getDistance()  
          Getter for property distance. 

 ComponentLifeUserInput getFinalInputData()  
          Getter for property finalInputData. 

 java.lang.String getId()  
          Getter for property id. 

 ComponentLifeUserInput getInitialInputData()  
          Getter for property initialInputData. 

 java.lang.String getModule()  
          Getter for property module. 

 double getSimilarityIndex()  
          Getter for property similarityIndex. 

 double getSimilarityIndex(ComponentLifeUserInput input)  
          Computes the similarity index between this case and the situation 
defined by the input data. 

 double getValue()  
          Getter for property value. 

 void setAlternatives(java.util.Vector alternatives)  
          Setter for property alternatives. 

 void setDistance(double distance)  
          Setter for property distance. 

 void setFinalInputData(ComponentLifeUserInput finalInputData)  
          Setter for property finalInputData. 

 void setId(java.lang.String id)  
          Setter for property id. 

 void setInitialInputData(ComponentLifeUserInput initialInputData)
          Setter for property initialInputData. 

 void setModule(java.lang.String module)  
          Setter for property module. 

 void setSimilarityIndex(double similarityIndex)  
          Setter for property similarityIndex. 

 void setValue(double value)  
          Setter for property value. 

 java.lang.String toString()  
          Returns a String representation of the case. 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait 
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Constructor Detail 
ComponentLifeCase 
 
public ComponentLifeCase() 

Creates a new instance of ComponentLifeCase  

 
ComponentLifeCase 
 
public ComponentLifeCase(java.lang.String id, 
                         java.util.Date timeStamp, 
                         ComponentLifeUserInput initialInputData, 
                         java.util.Vector alternatives, 
                         ComponentLifeUserInput finalInputData, 
                         java.lang.String module, 
                         double value, 
                         double similarityIndex, 
                         ComponentLifeTableInput similarityTable) 

Creates a new instance of ComponentLifeCase  

 
ComponentLifeCase 
 
public ComponentLifeCase(java.lang.String name, 
                         ComponentLifeTableInput tableInput, 
                         ComponentLifeUserInput initialInputData, 
                         java.util.Date timeStamp) 

Creates a new instance of ComponentLifeCase  

Method Detail 
getSimilarityIndex 
 
public double getSimilarityIndex(ComponentLifeUserInput input) 

Computes the similarity index between this case and the situation defined by the 
input data.  

 
toString 
 
public java.lang.String toString() 

Returns a String representation of the case.  

Specified by: 
toString in interface ComponentLifeSubCase 

 
getInitialInputData 
 
public ComponentLifeUserInput getInitialInputData() 

Getter for property initialInputData.  
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Returns: 
Value of property initialInputData. 

 
setInitialInputData 
 
public void setInitialInputData(ComponentLifeUserInput initialInputData) 

Setter for property initialInputData.  

Parameters: 
initialInputData - New value of property initialInputData. 

 
getModule 
 
public java.lang.String getModule() 

Getter for property module.  

Returns: 
Value of property module. 

 
setModule 
 
public void setModule(java.lang.String module) 

Setter for property module.  

Parameters: 
module - New value of property module. 

 
getId 
 
public java.lang.String getId() 

Getter for property id.  

Returns: 
Value of property id. 

 
setId 
 
public void setId(java.lang.String id) 

Setter for property id.  

Parameters: 
id - New value of property id. 

 
getValue 
 
public double getValue() 

Getter for property value.  

Returns: 
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Value of property value. 

 
setValue 
 
public void setValue(double value) 

Setter for property value.  

Parameters: 
value - New value of property value. 

 
getFinalInputData 
 
public ComponentLifeUserInput getFinalInputData() 

Getter for property finalInputData.  

Returns: 
Value of property finalInputData. 

 
setFinalInputData 
 
public void setFinalInputData(ComponentLifeUserInput finalInputData) 

Setter for property finalInputData.  

Parameters: 
finalInputData - New value of property finalInputData. 

 
getAlternatives 
 
public java.util.Vector getAlternatives() 

Getter for property alternatives.  

Returns: 
Value of property alternatives. 

 
setAlternatives 
 
public void setAlternatives(java.util.Vector alternatives) 

Setter for property alternatives.  

Parameters: 
alternatives - New value of property alternatives. 

 
getSimilarityIndex 
 
public double getSimilarityIndex() 

Getter for property similarityIndex.  

Returns: 
Value of property similarityIndex. 



 

  127

 
setSimilarityIndex 
 
public void setSimilarityIndex(double similarityIndex) 

Setter for property similarityIndex.  

Parameters: 
similarityIndex - New value of property similarityIndex. 

 
getDistance 
 
public double getDistance() 

Getter for property distance.  

Returns: 
Value of property distance. 

 
setDistance 
 
public void setDistance(double distance) 

Setter for property distance.  

Parameters: 
distance - New value of property distance. 

 
displayContents 
 
public void displayContents(int prefixNumOfTabs) 

Displays the contents of the case.  
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Class ComponentLifeCaseBase 
 
java.lang.Object 
  ComponentLifeCaseBase 
All Implemented Interfaces:  

ComponentLifeDataSource, java.io.Serializable 

 
public class ComponentLifeCaseBase 

extends java.lang.Object 

implements java.io.Serializable, ComponentLifeDataSource 

This is a wrapper class for the Casebase.  

See Also: 
Serialized Form 

 

Constructor Summary 

ComponentLifeCaseBase()  
          Creates a new instance of ComponentLifeCaseBase  

   

Method Summary 

 void addCase(ComponentLifeCase icase)  
          Adds a new case to the casebase. 

 void displayContents(int prefixNumOfTabs)  
          Displays the contents of the casebase. 

 java.util.Vector getAlternatives(ComponentLifeUserInput input, 
java.util.Date timeStamp, java.lang.String id)
          Get alternatives from the casebase for interpretation and 
construction. 

 java.util.Vector getAlternativesAsStrings(ComponentLifeUserInput userInput) 
          Returns the String representations of all alternative cases as a 
collection. 

 ComponentLifeCase getCase(int index)  
          Gets a case from the casebase according to an index. 
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 ComponentLifeCase getCase(java.lang.String caseID)  
          Gets a case based on its identifier. 

 java.util.Vector getSimilarCases(ComponentLifeUserInput userInput)  
            

 ComponentLifeTableInput getSimilarityTable()  
          Getter for property similarityTable. 

 int getSize()  
            

 void setSimilarityTable(ComponentLifeTableInput similarityTable)
          Setter for property similarityTable. 

 java.lang.String toString()  
            

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, 
wait 

   

Constructor Detail 
ComponentLifeCaseBase 
 
public ComponentLifeCaseBase() 

Creates a new instance of ComponentLifeCaseBase  

Method Detail 
addCase 
 
public void addCase(ComponentLifeCase icase) 

Adds a new case to the casebase.  

 
getCase 
 
public ComponentLifeCase getCase(int index) 

Gets a case from the casebase according to an index.  

 
getSize 
 
public int getSize() 
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toString 
 
public java.lang.String toString() 

 
getSimilarityTable 
 
public ComponentLifeTableInput getSimilarityTable() 

Getter for property similarityTable.  

Returns: 
Value of property similarityTable. 

 
setSimilarityTable 
 
public void setSimilarityTable(ComponentLifeTableInput similarityTable) 

Setter for property similarityTable.  

Parameters: 
similarityTable - New value of property similarityTable. 

 
getSimilarCases 
 
public java.util.Vector getSimilarCases(ComponentLifeUserInput userInput) 

 
getAlternatives 
 
public java.util.Vector getAlternatives(ComponentLifeUserInput input, 
                                        java.util.Date timeStamp, 
                                        java.lang.String id) 

Get alternatives from the casebase for interpretation and construction. The current 
way to get alternatives is to compute the similarity index of all cases within the 
casebase and select those with similarity value greater than the thresold.  

Specified by: 
getAlternatives in interface ComponentLifeDataSource 

 
getAlternativesAsStrings 
 
public java.util.Vector 
getAlternativesAsStrings(ComponentLifeUserInput userInput) 

Returns the String representations of all alternative cases as a collection.  

 
getCase 
 
public ComponentLifeCase getCase(java.lang.String caseID) 

Gets a case based on its identifier.  
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displayContents 
 
public void displayContents(int prefixNumOfTabs) 

Displays the contents of the casebase.  
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Class ComponentLifeConsoleDisplay 
 
java.lang.Object 
  ComponentLifeConsoleDisplay 

 
public class ComponentLifeConsoleDisplay 

extends java.lang.Object 

A placeholder to display results for throws situatedCBR systems in the screen console until a 
graphical user interface is developed.  

 

Constructor Summary 

ComponentLifeConsoleDisplay()  
          Creates a new instance of ComponentLifeConsoleDisplay  

   

Method Summary 

 void displayComponentLifeClass(java.lang.String str, 
int prefixNumOfTabs)  
          Display the String representations of objects in the system after 
prefixing each new line with a specified number of "tab" characters. 

 java.lang.String getConsoleDisplayString(java.lang.String str, 
int prefixNumOfTabs)  
          Prefix a specified number of "tab" characters to the String 
representations of objects in the system. 

   

 

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 
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Constructor Detail 
ComponentLifeConsoleDisplay 
 
public ComponentLifeConsoleDisplay() 

Creates a new instance of ComponentLifeConsoleDisplay  

Method Detail 
displayComponentLifeClass 
 
public void displayComponentLifeClass(java.lang.String str, 
                                      int prefixNumOfTabs) 

Display the String representations of objects in the system after prefixing each new 
line with a specified number of "tab" characters.  

 
getConsoleDisplayString 
 
public java.lang.String getConsoleDisplayString(java.lang.String str, 
                                                int prefixNumOfTabs) 

Prefix a specified number of "tab" characters to the String representations of objects 
in the system.  
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Class ComponentLifeConstructor 
 
java.lang.Object 
  ComponentLifeConstructor 

 
public class ComponentLifeConstructor 
extends java.lang.Object 

Performs the constructive functions as dictated by the situated CBR model. A new case is 
created by this construction.  

 

Constructor Summary 

ComponentLifeConstructor()  
          Creates a new instance of ComponentLifeConstructor  

   

Method Summary 

 void activateInferenceEngine(ComponentLifeUserInput userInput, 
java.util.Vector alternatives, ComponentLifeCase theCase)
          Provides an entry point to an external inference engine to 
attached to the situated CBR system for constructing a new case 
according to a set of alternatives obtained from the casebase, holistic 
model, delphi database and field database based on domain 
heuristics. 

 void constructCase(java.util.Vector dataSources, 
ComponentLifeUserInput userInput, 
java.lang.String idPrefix, java.util.Date timeStamp, 
ComponentLifeCase theCase)  
          Construct a new case through the use of domain heuristics 
operating on the set of alternatives obtained from the casebase, 
holistic model, delphi database and field database. 

 void displayAlternatives(java.util.Vector alternatives)  
          Display the alternatives from the casebase, holistic model, 
delphi database and field database (represented as a Vector of 
Vectors) as a String oblect with one "tab" characters as prefix. 

 java.util.Vector getAlternatives(java.util.Vector dataSources, 
ComponentLifeUserInput userInput, 
java.lang.String idPrefix, java.util.Date timeStamp)
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          Returns a Vector of Vectors object that represents the 
alternatives from the casebase, holistic model, delphi database and 
field database based on the user input parameter values. 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 

   

Constructor Detail 
ComponentLifeConstructor 
 
public ComponentLifeConstructor() 

Creates a new instance of ComponentLifeConstructor  

Method Detail 
constructCase 
 
public void constructCase(java.util.Vector dataSources, 
                          ComponentLifeUserInput userInput, 
                          java.lang.String idPrefix, 
                          java.util.Date timeStamp, 
                          ComponentLifeCase theCase) 

Construct a new case through the use of domain heuristics operating on the set of 
alternatives obtained from the casebase, holistic model, delphi database and field 
database.  

 
getAlternatives 
 
public java.util.Vector getAlternatives(java.util.Vector dataSources, 
                                        ComponentLifeUserInput userInput, 
                                        java.lang.String idPrefix, 
                                        java.util.Date timeStamp) 

Returns a Vector of Vectors object that represents the alternatives from the 
casebase, holistic model, delphi database and field database based on the user input 
parameter values.  

Each sub-Vector object represents alternatives from either the casebase, holistic 
model, delphi database or field database.  

 
displayAlternatives 
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public void displayAlternatives(java.util.Vector alternatives) 
Display the alternatives from the casebase, holistic model, delphi database and field 
database (represented as a Vector of Vectors) as a String oblect with one "tab" 
characters as prefix.  

 
activateInferenceEngine 
 
public void activateInferenceEngine(ComponentLifeUserInput userInput, 
                                    java.util.Vector alternatives, 
                                    ComponentLifeCase theCase) 

Provides an entry point to an external inference engine to attached to the situated 
CBR system for constructing a new case according to a set of alternatives obtained 
from the casebase, holistic model, delphi database and field database based on 
domain heuristics.  

No inference engine is used in the current version of the system. The alternatives are 
displayed and the method to compute value is set to a string "PLACEHOLDER". The 
computed value is set to 100.. The vector of vector representing the alternatives is not 
used.  
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Interface ComponentLifeDataSource 
All Known Implementing Classes:  

ComponentLifeCaseBase, ComponentLifeDelphiDatabase, 
ComponentLifeFieldDatabase, ComponentLifeHolisticModel 

 
public interface ComponentLifeDataSource 

An interface that all data sources must conform to. Currently these sources are: 
ComponentLifeCaseBase, ComponentLifeHolisticModel, ComponentLifeDelphiDatabase, 
ComponentLifeFieldDatabase.  

 

Method Summary 

 java.util.Vector getAlternatives(ComponentLifeUserInput input, 
java.util.Date timeStamp, java.lang.String id)
            

   

Method Detail 
getAlternatives 
 
public java.util.Vector getAlternatives(ComponentLifeUserInput input, 
                                        java.util.Date timeStamp, 
                                        java.lang.String id) 
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Class ComponentLifeDelphiDatabase 
 
java.lang.Object 
  ComponentLifeDelphiDatabase 
All Implemented Interfaces:  

ComponentLifeDataSource 

 
public class ComponentLifeDelphiDatabase 

extends java.lang.Object 

implements ComponentLifeDataSource 

This is a wrapper class for the Delphi Database.  

 

Constructor Summary 

ComponentLifeDelphiDatabase()  
          Creates a new instance of ComponentLifeDelphiDatabase  

 

   

Method Summary 

 java.util.Vector getAlternatives(ComponentLifeUserInput input, 
java.util.Date timeStamp, java.lang.String id)
          Get alternatives from the Holistic model for interpretation and 
construction. 

 double getLifeSurvey(java.lang.String compType, 
java.lang.String material, 
ComponentLifeGeoLocation geoLoc)  
          Gets predicted component life value. 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 



 

  139

   

Constructor Detail 
ComponentLifeDelphiDatabase 
 
public ComponentLifeDelphiDatabase() 

Creates a new instance of ComponentLifeDelphiDatabase  

Method Detail 
getLifeSurvey 
 
public double getLifeSurvey(java.lang.String compType, 
                            java.lang.String material, 
                            ComponentLifeGeoLocation geoLoc) 

Gets predicted component life value.  

 
getAlternatives 
 
public java.util.Vector getAlternatives(ComponentLifeUserInput input, 
                                        java.util.Date timeStamp, 
                                        java.lang.String id) 

Get alternatives from the Holistic model for interpretation and construction. The 
current way to get alternatives is based on using different materials and these 
alternatives are returned as objects of ComponentLifeHolisticSubCase. The original 
input is also used to generate an alternative.  

Specified by: 
getAlternatives in interface ComponentLifeDataSource 
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Class ComponentLifeDelphiSubCase 
 
java.lang.Object 
  ComponentLifeDelphiSubCase 
All Implemented Interfaces:  

ComponentLifeSubCase, java.io.Serializable 

 
public class ComponentLifeDelphiSubCase 

extends java.lang.Object 

implements java.io.Serializable, ComponentLifeSubCase 

This class represents an alternative from the Delphi Database that the system can used during 
interpretation or construction.  

See Also: 
Serialized Form 

 

Constructor Summary 

ComponentLifeDelphiSubCase(java.lang.String id, java.util.Date timeStamp, 
ComponentLifeUserInput userInput)  
          Creates a new instance of ComponentLifeDelphiSubCase 

   

Method Summary 

 java.lang.String toString()  
          Return a String representation of the object 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, 
wait 
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Constructor Detail 
ComponentLifeDelphiSubCase 
 
public ComponentLifeDelphiSubCase(java.lang.String id, 
                                  java.util.Date timeStamp, 
                                  ComponentLifeUserInput userInput) 

Creates a new instance of ComponentLifeDelphiSubCase  

Method Detail 
toString 
 
public java.lang.String toString() 

Return a String representation of the object  

Specified by: 
toString in interface ComponentLifeSubCase 
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Class ComponentLifeFieldDatabase 
 
java.lang.Object 
  ComponentLifeFieldDatabase 
All Implemented Interfaces:  

ComponentLifeDataSource 

 
public class ComponentLifeFieldDatabase 

extends java.lang.Object 

implements ComponentLifeDataSource 

This is a wrapper class for the Field (Maintenance) Database.  

 

Constructor Summary 

ComponentLifeFieldDatabase()  
          Creates a new instance of ComponentLifeFieldDatabase  

   

Method Summary 

 java.util.Vector getAlternatives(ComponentLifeUserInput input, 
java.util.Date timeStamp, java.lang.String id)
          Get alternatives from the Holistic model for interpretation and 
construction. 

 double getLifeData(java.lang.String compType, 
java.lang.String material, 
ComponentLifeGeoLocation geoLoc)  
          Gets predicted component life value. 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 
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Constructor Detail 
ComponentLifeFieldDatabase 
 
public ComponentLifeFieldDatabase() 

Creates a new instance of ComponentLifeFieldDatabase  

Method Detail 
getLifeData 
 
public double getLifeData(java.lang.String compType, 
                          java.lang.String material, 
                          ComponentLifeGeoLocation geoLoc) 

Gets predicted component life value.  

 
getAlternatives 
 
public java.util.Vector getAlternatives(ComponentLifeUserInput input, 
                                        java.util.Date timeStamp, 
                                        java.lang.String id) 

Get alternatives from the Holistic model for interpretation and construction. The 
current way to get alternatives is based on using different materials and these 
alternatives are returned as objects of ComponentLifeHolisticSubCase. The original 
input is also used to generate an alternative.  

Specified by: 
getAlternatives in interface ComponentLifeDataSource 
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Class ComponentLifeFieldSubCase 
 
java.lang.Object 
  ComponentLifeFieldSubCase 
All Implemented Interfaces:  

ComponentLifeSubCase, java.io.Serializable 

 
public class ComponentLifeFieldSubCase 

extends java.lang.Object 

implements java.io.Serializable, ComponentLifeSubCase 

This class represents an alternative from the Field Database that the system can used during 
interpretation or construction.  

See Also: 
Serialized Form 

 

Constructor Summary 

ComponentLifeFieldSubCase(java.lang.String id, java.util.Date timeStamp, 
ComponentLifeUserInput userInput)  
          Creates a new instance of ComponentLifeFieldSubCase 

   

Method Summary 

 java.lang.String toString()  
          Return a String representation of the object 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, 
wait 

   



 

  145

Constructor Detail 
ComponentLifeFieldSubCase 
 
public ComponentLifeFieldSubCase(java.lang.String id, 
                                 java.util.Date timeStamp, 
                                 ComponentLifeUserInput userInput) 

Creates a new instance of ComponentLifeFieldSubCase  

Method Detail 
toString 
 
public java.lang.String toString() 

Return a String representation of the object  

Specified by: 
toString in interface ComponentLifeSubCase 
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Class ComponentLifeGeoLocation 
 
java.lang.Object 
  ComponentLifeGeoLocation 
All Implemented Interfaces:  

java.io.Serializable 

 
public class ComponentLifeGeoLocation 

extends java.lang.Object 

implements java.io.Serializable 

This is a representation of a geographic location.  

See Also: 
Serialized Form 

 

Constructor Summary 

ComponentLifeGeoLocation()  
          Creates a new instance of ComponentLifeGeoLocation 

ComponentLifeGeoLocation(double locX, double locY)
          Creates a new instance of ComponentLifeGeoLocation with two doubles 

   

Method Summary 

 double getDistance(ComponentLifeGeoLocation geoLocation)  
          Computes the distance between two geoggraphic locations 

 double getLocationX()  
          Getter for property locationX. 

 double getLocationY()  
          Getter for property locationY. 

static void main(java.lang.String[] args)  
          Unit testing function. 

 void setLocationX(double locationX)  
          Setter for property locationX. 
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 void setLocationY(double locationY)  
          Setter for property locationY. 

 java.lang.String toString()  
          Returns a String representation of the object. 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, 
wait 

   

Constructor Detail 
ComponentLifeGeoLocation 
 
public ComponentLifeGeoLocation() 

Creates a new instance of ComponentLifeGeoLocation  

 
ComponentLifeGeoLocation 
 
public ComponentLifeGeoLocation(double locX, 
                                double locY) 

Creates a new instance of ComponentLifeGeoLocation with two doubles  

Method Detail 
getLocationX 
 
public double getLocationX() 

Getter for property locationX.  

Returns: 
Value of property locationX. 

 
setLocationX 
 
public void setLocationX(double locationX) 

Setter for property locationX.  

Parameters: 
locationX - New value of property locationX. 

 
getLocationY 
 
public double getLocationY() 
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Getter for property locationY.  

Returns: 
Value of property locationY. 

 
setLocationY 
 
public void setLocationY(double locationY) 

Setter for property locationY.  

Parameters: 
locationY - New value of property locationY. 

 
getDistance 
 
public double getDistance(ComponentLifeGeoLocation geoLocation) 

Computes the distance between two geoggraphic locations  

 
toString 
 
public java.lang.String toString() 

Returns a String representation of the object.  

 
main 
 
public static void main(java.lang.String[] args) 

Unit testing function.  
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Class ComponentLifeHolisticModel 
 
java.lang.Object 
  ComponentLifeHolisticModel 
All Implemented Interfaces:  

ComponentLifeDataSource 

 
public class ComponentLifeHolisticModel 
extends java.lang.Object 

implements ComponentLifeDataSource 

This is a wrapper class for the Holistic Model.  

 

Constructor Summary 

ComponentLifeHolisticModel()  
          Creates a new instance of ComponentLifeHolisticModel  

   

Method Summary 

 java.util.Vector getAlternatives(ComponentLifeUserInput input, 
java.util.Date timeStamp, java.lang.String id)
          Get alternatives from the Holistic model for interpretation and 
construction. 

 double getLifeModel(java.lang.String compType, 
java.lang.String material, 
ComponentLifeGeoLocation geoLoc)  
          Gets predicted component life value. 

 double getSalt(ComponentLifeGeoLocation geoLoc)  
          Gets Salinity value based on location data. 

 double getToW(ComponentLifeGeoLocation geoLoc)  
          Gets Time-to-Wetness value based on location data. 

static void main(java.lang.String[] args)  
          Unit testing function. 
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Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 

   

Constructor Detail 
ComponentLifeHolisticModel 
 
public ComponentLifeHolisticModel() 

Creates a new instance of ComponentLifeHolisticModel  

Method Detail 
getToW 
 
public double getToW(ComponentLifeGeoLocation geoLoc) 

Gets Time-to-Wetness value based on location data.  

 
getSalt 
 
public double getSalt(ComponentLifeGeoLocation geoLoc) 

Gets Salinity value based on location data.  

 
getLifeModel 
 
public double getLifeModel(java.lang.String compType, 
                           java.lang.String material, 
                           ComponentLifeGeoLocation geoLoc) 

Gets predicted component life value.  

 
getAlternatives 
 
public java.util.Vector getAlternatives(ComponentLifeUserInput input, 
                                        java.util.Date timeStamp, 
                                        java.lang.String id) 

Get alternatives from the Holistic model for interpretation and construction. The 
current way to get alternatives is based on using different materials and these 
alternatives are returned as objects of ComponentLifeHolisticSubCase. The original 
input is also used to generate an alternative.  

Specified by: 
getAlternatives in interface ComponentLifeDataSource 

 
main 
 
public static void main(java.lang.String[] args) 
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Unit testing function.  

 
 

 Package    Class  Tree  Deprecated Index Help 
 
 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes  
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD 

 



 

  152

 

 Package    Class  Tree  Deprecated Index Help 
 
 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes  
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD 

 

Class ComponentLifeHolisticSubCase 
 
java.lang.Object 
  ComponentLifeHolisticSubCase 
All Implemented Interfaces:  

ComponentLifeSubCase, java.io.Serializable 

 
public class ComponentLifeHolisticSubCase 

extends java.lang.Object 

implements java.io.Serializable, ComponentLifeSubCase 

This class represents an alternative from the Holistic Model that the system can used during 
interpretation or construction.  

See Also: 
Serialized Form 

 

Constructor Summary 

ComponentLifeHolisticSubCase(java.lang.String id, 
java.util.Date timeStamp, ComponentLifeUserInput userInput)
          Creates a new instance of ComponentLifeHolisticSubCase 

   

Method Summary 

 java.lang.String toString()  
          Return a String representation of the object 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, 
wait 
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Constructor Detail 
ComponentLifeHolisticSubCase 
 
public ComponentLifeHolisticSubCase(java.lang.String id, 
                                    java.util.Date timeStamp, 
                                    ComponentLifeUserInput userInput) 

Creates a new instance of ComponentLifeHolisticSubCase  

Method Detail 
toString 
 
public java.lang.String toString() 

Return a String representation of the object  

Specified by: 
toString in interface ComponentLifeSubCase 
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Class ComponentLifeInterpreter 
 
java.lang.Object 
  ComponentLifeInterpreter 

 
public class ComponentLifeInterpreter 
extends java.lang.Object 

Performs the interpretive functions as dictated by the situated CBR model. User input 
paramaters values are finalized by this class during interpretation.  

 

Constructor Summary 

ComponentLifeInterpreter()  
          Creates a new instance of ComponentLifeInterpreter  

   

Method Summary 

 ComponentLifeUserInput activateInferenceEngine(ComponentLifeUserInput userInput, 
java.util.Vector alternatives)  
          Provides an entry point to an external inference engine to 
attached to the situated CBR system for interpreting the current 
situation according to a set of alternatives obtained from the 
casebase, holistic model, delphi database and field database based 
on domain heuristics. 

 void displayAlternatives(java.util.Vector alternatives, 
int tabSpace)  
          Display the alternatives from the casebase, holistic model, 
delphi database and field database (represented as a Vector of 
Vectors) as a String oblect with a specific number of "tab" characters 
as prefix. 

 java.util.Vector getAlternatives(java.util.Vector dataSources, 
ComponentLifeUserInput userInput, 
java.lang.String idPrefix, java.util.Date timeStamp)
          Returns a Vector of Vectors object that represents the 
alternatives from the casebase, holistic model, delphi database and 
field database based on the user input parameter values. 

 java.lang.String getAlternativesStrings(java.util.Vector alternatives)  
          Return the alternatives from the casebase, holistic model, 



 

  155

delphi database and field database, represented as a Vector of 
Vectors object, as a String object. 

 ComponentLifeUserInput getFinalUserInput(java.util.Vector dataSources, 
ComponentLifeUserInput userInput, 
java.lang.String idPrefix, java.util.Date timeStamp)
          Finalizes the input parameter values as a new 
ComponentLifeUserInput object through the use of domain heuristics 
operating on the set of alternatives obtained from the casebase, 
holistic model, delphi database and field database. 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 

   

Constructor Detail 
ComponentLifeInterpreter 
 
public ComponentLifeInterpreter() 

Creates a new instance of ComponentLifeInterpreter  

Method Detail 
getFinalUserInput 
 
public ComponentLifeUserInput 
getFinalUserInput(java.util.Vector dataSources, 
                                                
ComponentLifeUserInput userInput, 
                                                java.lang.String idPrefix, 
                                                java.util.Date timeStamp) 

Finalizes the input parameter values as a new ComponentLifeUserInput object 
through the use of domain heuristics operating on the set of alternatives obtained 
from the casebase, holistic model, delphi database and field database.  

 
getAlternatives 
 
public java.util.Vector getAlternatives(java.util.Vector dataSources, 
                                        ComponentLifeUserInput userInput, 
                                        java.lang.String idPrefix, 
                                        java.util.Date timeStamp) 

Returns a Vector of Vectors object that represents the alternatives from the 
casebase, holistic model, delphi database and field database based on the user input 
parameter values.  
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Each sub-Vector object represents alternatives from either the casebase, holistic 
model, delphi database or field database.  

 
activateInferenceEngine 
 
public ComponentLifeUserInput 
activateInferenceEngine(ComponentLifeUserInput userInput, 
                                                      
java.util.Vector alternatives) 

Provides an entry point to an external inference engine to attached to the situated 
CBR system for interpreting the current situation according to a set of alternatives 
obtained from the casebase, holistic model, delphi database and field database 
based on domain heuristics.  

No inference engine is used in the current version of the system. The alternatives are 
displayed and the input data is duplicated. The vector of vector representing the 
alternatives is not used.  

 
displayAlternatives 
 
public void displayAlternatives(java.util.Vector alternatives, 
                                int tabSpace) 

Display the alternatives from the casebase, holistic model, delphi database and field 
database (represented as a Vector of Vectors) as a String oblect with a specific 
number of "tab" characters as prefix.  

 
getAlternativesStrings 
 
public java.lang.String 
getAlternativesStrings(java.util.Vector alternatives) 

Return the alternatives from the casebase, holistic model, delphi database and field 
database, represented as a Vector of Vectors object, as a String object.  

 
 

 Package    Class  Tree  Deprecated Index Help 
 
 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes  
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD 

 



 

  157

 

 Package    Class  Tree  Deprecated Index Help 
 
 PREV CLASS   NEXT CLASS FRAMES    NO FRAMES     All Classes  
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD 

 

Class ComponentLifeSituatedCBR 
 
java.lang.Object 
  ComponentLifeSituatedCBR 

 
public class ComponentLifeSituatedCBR 

extends java.lang.Object 

This class provides the entry point to the situated CBR system via its main() function. The 
following procedures are followed for a typical run of the system:  

1) Initialization:  

a) casebase file and data file for computing similarity index is located  

b) interface to data file for computing similarity index is created  

c) casebase is loaded  

d) holistic model is loaded  

e) delphi database is loaded  

f) field database is loaded  

g) all casebase, holistic model and databases are collected into a Vector object as data sources  

h) new case is created  

2) Interpretation:  

a) interpreter is created  

b) user input is finalized  

3) Construction:  

a) constructor is created  

b) all parameter valuess of the new case is computed  

4) Closure  

a) new case is saved  
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b) casebase is closed  

 

Constructor Summary 

ComponentLifeSituatedCBR()  
          Creates a new instance of ComponentLifeSituatedCBR  

   

Method Summary 

static void main(java.lang.String[] args)  
          Entry point to functions for system testing. 

 void testScenario0()  
          Testing codes for Test Scenario 0 

 void testScenario1()  
          Testing codes for Test Scenario 1 

 void testScenario2()  
          Testing codes for Test Scenario 2 

 void testScenario3()  
          Testing codes for Test Scenario 3 

 void testScenario4()  
          Testing codes for Test Scenario 4 

 void testScenario5()  
          Testing codes for Test Scenario 5 

 void testScenario6()  
          Testing codes for Test Scenario 6 

 void testScenario7()  
          Testing codes for Test Scenario 7 

 void testScenario8()  
          Testing codes for Test Scenario 8 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 
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Constructor Detail 
ComponentLifeSituatedCBR 
 
public ComponentLifeSituatedCBR() 

Creates a new instance of ComponentLifeSituatedCBR  

Method Detail 
testScenario0 
 
public void testScenario0() 

Testing codes for Test Scenario 0  

 
testScenario1 
 
public void testScenario1() 

Testing codes for Test Scenario 1  

 
testScenario2 
 
public void testScenario2() 

Testing codes for Test Scenario 2  

 
testScenario3 
 
public void testScenario3() 

Testing codes for Test Scenario 3  

 
testScenario4 
 
public void testScenario4() 

Testing codes for Test Scenario 4  

 
testScenario5 
 
public void testScenario5() 

Testing codes for Test Scenario 5  

 
testScenario6 
 
public void testScenario6() 

Testing codes for Test Scenario 6  

 
testScenario7 
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public void testScenario7() 

Testing codes for Test Scenario 7  

 
testScenario8 
 
public void testScenario8() 

Testing codes for Test Scenario 8  

 
main 
 
public static void main(java.lang.String[] args) 

Entry point to functions for system testing. Comment off different function calls to 
effect different test scenarios.  

Parameters: 
args - the command line arguments 
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Interface ComponentLifeSubCase 
All Known Implementing Classes:  

ComponentLifeCase, ComponentLifeDelphiSubCase, ComponentLifeFieldSubCase, 
ComponentLifeHolisticSubCase 

 
public interface ComponentLifeSubCase 

An interface that all subcase objects must conform to. Currently these subcases are: 
ComponentLifeCase, ComponentLifeHolisticSubCase, ComponentLifeDelphiSubCase, 
ComponentLifeFieldSubCase.  

 

Method Summary 

 java.lang.String toString()  
            

   

Method Detail 
toString 
 
public java.lang.String toString() 
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Class ComponentLifeTableInput 
 
java.lang.Object 
  ComponentLifeTableInput 
All Implemented Interfaces:  

java.io.Serializable 

 
public class ComponentLifeTableInput 
extends java.lang.Object 

implements java.io.Serializable 

This class provides an interface to the codes that read in the data required for computing the 
similarity index between the situations defined by a case and the user input. Currently the data 
resides within the file: userInputCFG.txt.  

Expansion Possibilities:  

1) The tabulated within the data file (userInputCFG.txt) can be changed to provide better 
coorelations between different situations when computing the similarity based on: a) 
maintanence factor; b)cleaning factor with condition gunk can collect or cleaning factor with 
gunk cannot collect; c)location-in-building factor; and d) geographic-location factor with 
condition as marine application.  

2) The whole notion of using the data file can be replaced by another approach. To isolate 
changes to existing codes, the functionalities as defined by the interface to this class (public 
methods) must be conformed to by the new implementation.  

See Also: 
Serialized Form 

 

Nested Class Summary 

 class ComponentLifeTableInput.Parameter  
            

   

Constructor Summary 

ComponentLifeTableInput()  
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          Creates a new instance of ComponentLifeTableInput 

ComponentLifeTableInput(java.lang.String fileName)  
          Creates a new instance of ComponentLifeTableInput based on the contents of a data 
file. 

   

Method Summary 

 java.lang.String getColumn(java.lang.String str, int col
            

 int getMaxInt(java.lang.String str)  
          Helper function to get the maximum value from a
reprsentation of a range. 

 ComponentLifeTableInput.Parameter getParameter()  
          Getter for property parameter. 

 double getParameterSimilarityIndex(java.lang.String name, 
int oldCaseValue, int newCas
java.lang.String condition)  
            

 double getParameterSimilarityIndex(java.lang.String name, 
java.lang.String oldCaseValue, 
java.lang.String newCaseValue, 
java.lang.String condition)  
            

 java.util.Vector getTableContents()  
          Getter for property tableContents. 

 java.lang.String getVariableName(java.lang.String name, 
java.lang.String condition, int intInpu
            

static void main(java.lang.String[] args)  
          Unit testing function. 

 void setParameter(ComponentLifeTableInput.Parameter par
          Setter for property parameter. 

 void setTableContents(java.util.Vector tableContents)  
          Setter for property tableContents. 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 
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Constructor Detail 
ComponentLifeTableInput 
 
public ComponentLifeTableInput() 

Creates a new instance of ComponentLifeTableInput  

 
ComponentLifeTableInput 
 
public ComponentLifeTableInput(java.lang.String fileName) 

Creates a new instance of ComponentLifeTableInput based on the contents of a data 
file.  

Method Detail 
getParameter 
 
public ComponentLifeTableInput.Parameter getParameter() 

Getter for property parameter.  

Returns: 
Value of property parameter. 

 
setParameter 
 
public void setParameter(ComponentLifeTableInput.Parameter parameter) 

Setter for property parameter.  

Parameters: 
parameter - New value of property parameter. 

 
getTableContents 
 
public java.util.Vector getTableContents() 

Getter for property tableContents.  

Returns: 
Value of property tableContents. 

 
setTableContents 
 
public void setTableContents(java.util.Vector tableContents) 

Setter for property tableContents.  

Parameters: 
tableContents - New value of property tableContents. 

 
getParameterSimilarityIndex 
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public double getParameterSimilarityIndex(java.lang.String name, 
                                          java.lang.String oldCaseValue, 
                                          java.lang.String newCaseValue, 
                                          java.lang.String condition) 

 
getColumn 
 
public java.lang.String getColumn(java.lang.String str, 
                                  int columnNum) 

 
getParameterSimilarityIndex 
 
public double getParameterSimilarityIndex(java.lang.String name, 
                                          int oldCaseValue, 
                                          int newCaseValue, 
                                          java.lang.String condition) 

 
getVariableName 
 
public java.lang.String getVariableName(java.lang.String name, 
                                        java.lang.String condition, 
                                        int intInputValue) 

 
getMaxInt 
 
public int getMaxInt(java.lang.String str) 

Helper function to get the maximum value from a String reprsentation of a range. For 
example: the function will return an integer of value 2 when str equals to ""  

 
main 
 
public static void main(java.lang.String[] args) 

Unit testing function.  
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Class ComponentLifeTableInput.Parameter 
 
java.lang.Object 
  ComponentLifeTableInput.Parameter 
All Implemented Interfaces:  

java.io.Serializable 

Enclosing class: 
ComponentLifeTableInput 

 
public class ComponentLifeTableInput.Parameter 
extends java.lang.Object 

implements java.io.Serializable 

See Also: 
Serialized Form 

 

Constructor Summary 

ComponentLifeTableInput.Parameter()  
             

   

Method Summary 

 java.lang.String getCondition()  
          Getter for property condition. 

 java.lang.String getName()  
          Getter for property name. 

 java.util.Vector getTable()  
          Getter for property table. 

 java.util.Vector getVariables()  
          Getter for property variables. 

 void setCondition(java.lang.String condition)  
          Setter for property condition. 

 void setName(java.lang.String name)  
          Setter for property name. 
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 void setTable(java.util.Vector table)  
          Setter for property table. 

 void setVariables(java.util.Vector variables)  
          Setter for property variables. 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 
wait, wait, wait 

   

Constructor Detail 
ComponentLifeTableInput.Parameter 
 
public ComponentLifeTableInput.Parameter() 

Method Detail 
getName 
 
public java.lang.String getName() 

Getter for property name.  

Returns: 
Value of property name. 

 
setName 
 
public void setName(java.lang.String name) 

Setter for property name.  

Parameters: 
name - New value of property name. 

 
getCondition 
 
public java.lang.String getCondition() 

Getter for property condition.  

Returns: 
Value of property condition. 

 
setCondition 
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public void setCondition(java.lang.String condition) 
Setter for property condition.  

Parameters: 
condition - New value of property condition. 

 
getTable 
 
public java.util.Vector getTable() 

Getter for property table.  

Returns: 
Value of property table. 

 
setTable 
 
public void setTable(java.util.Vector table) 

Setter for property table.  

Parameters: 
table - New value of property table. 

 
getVariables 
 
public java.util.Vector getVariables() 

Getter for property variables.  

Returns: 
Value of property variables. 

 
setVariables 
 
public void setVariables(java.util.Vector variables) 

Setter for property variables.  

Parameters: 
variables - New value of property variables. 
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Class ComponentLifeUserInput 
 
java.lang.Object 
  ComponentLifeUserInput 
All Implemented Interfaces:  

java.io.Serializable 

 
public class ComponentLifeUserInput 
extends java.lang.Object 

implements java.io.Serializable 

This class represents the set of input paramaters and their associated values.  

Currently objects from this class are created without the use of graphical user interface within 
the main method of ComponentLifeSituatedCBR.  

See Also: 
Serialized Form 

 

Constructor Summary 

ComponentLifeUserInput()  
          Creates a new instance of ComponentLifeUserInput 

ComponentLifeUserInput(ComponentLifeUserInput oldInput)  
          Duplicates a new instance of ComponentLifeUserInput 

ComponentLifeUserInput(double locX, double locY, 
java.lang.String material, java.lang.String componentType, 
java.lang.String maintenanceState, java.lang.String cleaningState, 
java.lang.String cleaningCondition, java.lang.String locationInBuilding, 
java.lang.String geoLocationCondition)  
          Creates a new instance of ComponentLifeUserInput 

   

Method Summary 

 java.lang.String getCleaningCondition()  
          Getter for property cleaningCondition. 

 java.lang.String getCleaningState()  



 

  170

          Getter for property cleaningState. 

 java.lang.String getComponentType()  
          Getter for property componentType. 

 java.lang.String getGeoLocationCondition()  
          Getter for property geoLocationState. 

 java.lang.String getLocationInBuilding()  
          Getter for property locationInBuilding. 

 java.lang.String getMaintenanceState()  
          Getter for property maintanenceState. 

 java.lang.String getMaterial()  
          Getter for property material. 

 double getSalt()  
          Getter for property salt. 

 ComponentLifeGeoLocation getSiteLocation()  
          Getter for property geoLocation. 

 double getToW()  
          Getter for property toW. 

 void setCleaningCondition(java.lang.String cleaningCondition)  
          Setter for property cleaningCondition. 

 void setCleaningState(java.lang.String cleaningState)  
          Setter for property cleaningState. 

 void setComponentType(java.lang.String componentType)  
          Setter for property componentType. 

 void setGeoLocationCondition(java.lang.String geoLocationConditi
          Setter for property geoLocationState. 

 void setLocationInBuilding(java.lang.String locationInBuilding) 
          Setter for property locationInBuilding. 

 void setMaintenanceState(java.lang.String maintenanceState)  
          Setter for property maintanenceState. 

 void setMaterial(java.lang.String material)  
          Setter for property material. 

 void setSalt()  
          Setter for property salt using a ComponentLifeHolisticModel object

 void setSalt(double salt)  
          Setter for property salt. 

 void setSiteLocation(ComponentLifeGeoLocation geoLocation)  
          Setter for property geoLocation. 

 void setToW()  
          Setter for property toW using a ComponentLifeHolisticModel object
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 void setToW(double toW)  
          Setter for property toW. 

 java.lang.String toString()  
          Return a String representation of the object. 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, 
wait 

   

Constructor Detail 
ComponentLifeUserInput 
 
public ComponentLifeUserInput() 

Creates a new instance of ComponentLifeUserInput  

 
ComponentLifeUserInput 
 
public ComponentLifeUserInput(double locX, 
                              double locY, 
                              java.lang.String material, 
                              java.lang.String componentType, 
                              java.lang.String maintenanceState, 
                              java.lang.String cleaningState, 
                              java.lang.String cleaningCondition, 
                              java.lang.String locationInBuilding, 
                              java.lang.String geoLocationCondition) 

Creates a new instance of ComponentLifeUserInput  

 
ComponentLifeUserInput 
 
public ComponentLifeUserInput(ComponentLifeUserInput oldInput) 

Duplicates a new instance of ComponentLifeUserInput  

Method Detail 
getSiteLocation 
 
public ComponentLifeGeoLocation getSiteLocation() 

Getter for property geoLocation.  

Returns: 
Value of property geoLocation. 
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setSiteLocation 
 
public void setSiteLocation(ComponentLifeGeoLocation geoLocation) 

Setter for property geoLocation.  

Parameters: 
geoLocation - New value of property geoLocation. 

 
getMaterial 
 
public java.lang.String getMaterial() 

Getter for property material.  

Returns: 
Value of property material. 

 
setMaterial 
 
public void setMaterial(java.lang.String material) 

Setter for property material.  

Parameters: 
material - New value of property material. 

 
getComponentType 
 
public java.lang.String getComponentType() 

Getter for property componentType.  

Returns: 
Value of property componentType. 

 
setComponentType 
 
public void setComponentType(java.lang.String componentType) 

Setter for property componentType.  

Parameters: 
componentType - New value of property componentType. 

 
getMaintenanceState 
 
public java.lang.String getMaintenanceState() 

Getter for property maintanenceState.  

Returns: 
Value of property maintanenceState. 

 
setMaintenanceState 
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public void setMaintenanceState(java.lang.String maintenanceState) 

Setter for property maintanenceState.  

 
getCleaningState 
 
public java.lang.String getCleaningState() 

Getter for property cleaningState.  

Returns: 
Value of property cleaningState. 

 
setCleaningState 
 
public void setCleaningState(java.lang.String cleaningState) 

Setter for property cleaningState.  

Parameters: 
cleaningState - New value of property cleaningState. 

 
getCleaningCondition 
 
public java.lang.String getCleaningCondition() 

Getter for property cleaningCondition.  

Returns: 
Value of property cleaningCondition. 

 
setCleaningCondition 
 
public void setCleaningCondition(java.lang.String cleaningCondition) 

Setter for property cleaningCondition.  

Parameters: 
cleaningCondition - New value of property cleaningCondition. 

 
getLocationInBuilding 
 
public java.lang.String getLocationInBuilding() 

Getter for property locationInBuilding.  

Returns: 
Value of property locationInBuilding. 

 
setLocationInBuilding 
 
public void setLocationInBuilding(java.lang.String locationInBuilding) 

Setter for property locationInBuilding.  

Parameters: 
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locationInBuilding - New value of property locationInBuilding. 

 
getGeoLocationCondition 
 
public java.lang.String getGeoLocationCondition() 

Getter for property geoLocationState.  

Returns: 
Value of property geoLocationState. 

 
setGeoLocationCondition 
 
public void setGeoLocationCondition(java.lang.String geoLocationCondition) 

Setter for property geoLocationState.  

 
getToW 
 
public double getToW() 

Getter for property toW.  

Returns: 
Value of property toW. 

 
setToW 
 
public void setToW(double toW) 

Setter for property toW.  

Parameters: 
toW - New value of property toW. 

 
setToW 
 
public void setToW() 

Setter for property toW using a ComponentLifeHolisticModel object.  

 
getSalt 
 
public double getSalt() 

Getter for property salt.  

Returns: 
Value of property salt. 

 
setSalt 
 
public void setSalt(double salt) 
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Setter for property salt.  

Parameters: 
salt - New value of property salt. 

 
setSalt 
 
public void setSalt() 

Setter for property salt using a ComponentLifeHolisticModel object.  

 
toString 
 
public java.lang.String toString() 

Return a String representation of the object.  
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Appendix V Codes for Unit Testing  
(for class ComponentLifeTableInput) 

 public static void main(String[] args){ 

        System.out.println("\n\n\n******** Testing of ComponentLifeTableInput Class ********\n\n\n"); 

        ComponentLifeTableInput clife = new ComponentLifeTableInput("D:\\My Documents\\Working\\CRC_SituatedCaseBasedSystem\\Coding\\userInputCFG.txt"); 

        Vector cont = clife.getTableContents(); 

         

        /* Testing cods to look into the table 

        int size = cont.size(); 

        for (int i=0; i<size; i++){ 
            Parameter par = (Parameter)cont.get(i); 

            System.out.println("Name: " + par.getName()); 

            System.out.println("Condition: " + par.getCondition()); 

            Vector var = par.getVariables(); 

            int sizeV = var.size(); 

            for (int j=0; j<sizeV; j++){ 

                System.out.println("\tVariables: " + ((String)var.get(j))); 

            } 

            Vector tab = par.getTable(); 

            int sizeT = tab.size(); 

            for (int k=0; k<sizeT; k++){ 

                System.out.println("\tTable: " + ((String)tab.get(k))); 

            } 

            System.out.println("\n"); 

        }*/ 

         

        //String col = "0 0.7 1   0.9"; 

        //System.out.println("Test: " + clife.getColumn(col, 3)); 

         

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("maintenance state", "maintained", "maintained", "NULL")); 

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("maintenance state", "not maintained", "not maintained", "NULL")); 

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("maintenance state", "maintained", "not maintained", "NULL")); 

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("maintenance state", "not maintained", "maintained", "NULL")); 

         

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "cleaned", "cleaned", "gunk can collect")); 

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "not cleaned", "not cleaned", "gunk can collect")); 

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "cleaned", "not cleaned", "gunk can collect")); 

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "not cleaned", "cleaned", "gunk can collect")); 

         

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "cleaned", "cleaned", "gunk cannot collect")); 

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "not cleaned", "not cleaned", "gunk cannot collect")); 

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "cleaned", "not cleaned", "gunk cannot collect")); 

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "not cleaned", "cleaned", "gunk cannot collect")); 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "underfloor positions in contact with earth", "NULL")); 
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        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "underfloor cavity", "NULL")); 
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        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "moisture accumulation points in wall cavities", "NULL")); 
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        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "enclosed room", "NULL")); 

        */ 

        /* 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "open rooftop", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "open wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "sheltered wall", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "edges and external corners of walls or roofs", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "dirt accumulation zone", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "roof cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "wall cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "moisture accumulation points in wall cavities", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "underfloor cavity", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "underfloor positions in contact with earth", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "semi enclosed space", "NULL")); 

        System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "enclosed room", "NULL")); 

        */ 

        // Out of range test 

        //System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed rooms", "enclosed room", "NULL")); 

                 

        //String str = "20 to 39"; 

        //System.out.println("Max: " + (str.substring(str.indexOf("to")+2)).trim()); 

        //System.out.println("Min: " + (str.substring(0,str.indexOf("to")-1)).trim()); 

         

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 0, 0, "marine application")); 



 

  180

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 5, 5, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 19, 19, "marine application")); 

 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 20, 20, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 25, 25, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 39, 39, "marine application")); 

 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 40, 40, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 45, 45, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 59, 59, "marine application")); 

         

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 60, 60, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 65, 65, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 79, 79, "marine application")); 

         

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 80, 80, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 85, 85, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 100, 100, "marine application")); 

         

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 5, 25, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 5, 45, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 5, 65, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 5, 85, "marine application")); 

         

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 25, 5, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 25, 45, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 25, 65, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 25, 85, "marine application")); 

 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 45, 5, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 45, 25, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 45, 65, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 45, 85, "marine application")); 

 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 65, 5, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 65, 25, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 65, 45, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 65, 85, "marine application")); 

 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 85, 5, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 85, 25, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 85, 45, "marine application")); 

        //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 85, 65, "marine application")); 

         

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 0, 0, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 2, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 4, 4, "marine application")); 

 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 5, 5, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 10, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 15, 15, "marine application")); 

 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 16, 16, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 28, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 40, 40, "marine application")); 
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        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 41, 41, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 70, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 100, 100, "marine application")); 

 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 101, 101, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 200, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 300, 300, "marine application")); 

 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 301, 301, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 350, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 400, 400, "marine application")); 

         

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 10, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 28, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 70, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 200, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 350, "marine application")); 

         

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 2, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 28, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 70, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 200, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 350, "marine application")); 

         

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 2, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 10, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 70, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 200, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 350, "marine application")); 

         

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 2, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 10, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 28, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 200, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 350, "marine application")); 

         

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 2, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 10, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 28, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 70, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 350, "marine application")); 

         

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 2, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 10, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 28, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 70, "marine application")); 

        //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 200, "marine application")); 

         

    } 
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