

Case-Based Reasoning in Construction
and Infrastructure Projects - Final Report

Report No. 2002-059-B No.16
Editor Penny Corrigan
The research described in this report was carried out by
Project Leader Ivan Cole
Team Members:

Michael Ball
Alan Carse
Wan Yee Chan
Penny Corrigan
Wayne Ganther
Tim Muster
David Paterson
Gerardo Trinidad
Mary Lou Maher
PakSan Liew

Research Program: B
Program Name Sustainable Built Assets
Project No.: 2002-059-B
Project Name: Case-Based Reasoning in Construction and Infrastructure Projects
Date: June 2005

Distribution List

Cooperative Research Centre for Construction Innovation
Authors:
Ivan Cole
Michael Ball
Alan Carse
Wan Yee Chan
Penny Corriga
Wayne Ganther
Tim Muster
David Paterson
Gerardo Trinidad
Mary Lou Maher
PakSan Liew

Disclaimer
The Client makes use of this Report or any information
provided by the Cooperative Research Centre for
Construction Innovation in relation to the Consultancy
Services at its own risk. Construction Innovation will not
be responsible for the results of any actions taken by the
Client or third parties on the basis of the information in
this Report or other information provided by Construction
Innovation nor for any errors or omissions that may be
contained in this Report. Construction Innovation
expressly disclaims any liability or responsibility to any
person in respect of any thing done or omitted to be
done by any person in reliance on this Report or any
information provided.

© 2005 Icon.Net Pty Ltd

To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced
or copied in any form or by any means except with the written permission of Icon.Net Pty Ltd.

Please direct all enquiries to:

Chief Executive Officer
Cooperative Research Centre for Construction Innovation
9th Floor, L Block, QUT, 2 George St
Brisbane Qld 4000
AUSTRALIA
T: 61 7 3864 1393
F: 61 7 3864 9151
E: enquiries@construction-innovation.info
W: www.construction-innovation.info

 i

Table of Contents

Table of Contents .. i
List of Tables ... iii
List of Figures.. iv
EXECUTIVE SUMMARY.. 1
1. INTRODUCTION.. 3

1.1 Background ..3
1.2 Problem Definition ..4

2. SITUATED CASE-BASED REASONING MODEL .. 5
2.1 Definition ..5
2.2 Constructive Memory Model ...6
2.3 Framework of Situatedness ..7

2.3.1 Recursive Interpretations ...8
2.4 Using Situated CBR for Prediction of Corrosion Rates ...9

3. SITUATED CBR FOR PREDICTION OF CORROSION RATES ... 11
3.1 Components ...11

3.1.1 Delphi Database ..11
3.1.2 Queensland Department of Housing - Maintenance Database13
3.1.3 Holistic Model...13

3.2 Definition of Cases ...15
3.2.1 Characterisation of Environment ..16
3.2.2 Detailed Building Characterisation ...17

3.3 Defining Case Similarity..18
3.3.1 Maintenance ..19
3.3.2 Cleaning...19
3.3.3 Location in Building (Ls) ...20
3.3.4 Geographic Location (Gs)...20

4. DESIGN AND IMPLEMENTATION OF SITUATED CBR FOR CORROSION PREDICTION 22
4.1 Specification and Design ..22

4.1.1 Definition of Problem..22
4.1.2 Usage Scenario ...22
4.1.3 System Scenario..23
4.1.4 Context Diagram ..24
4.1.5 Software Environment..25
4.1.6 System Architecture...25
4.1.7 Software Modules ..33

4.2 Implementation ...34
4.2.1 Class Diagram ...34
4.2.2 Interactions ..35
4.2.3 Extension and Modification Points ...35

4.3 System Testing...38
4.3.1 Implementation Particularities ..38
4.3.2 Documentation Scope..38
4.3.3 Output Formatting ..38
4.3.4 Test Scenarios ...39

5. QDPW APPLICATION... 41
5.1 Case Definition for Gutters ...41
5.2 Holistic Model Modifications ...41

5.2.1 TOW Analysis for Gutters ..42
5.2.2 Theoretical Analysis of Gutter Drying...48
5.2.3 Colorbond® Degradation Model...48
5.2.4 Conversion of Mass Loss to Life Estimate ...63
5.2.5 Gutter Survey...65
5.2.6 Holistic Model Program for Gutters ..71

 ii

5.3 CBR Queensland Schools’ Gutter User Interface ...75
5.4 Utility of Present Results...76

6. QDMR APPLICATION... 77
6.1 Analysis Methodology...77

6.1.1 Computation Method..77
6.1.2 Information Supplied by QDMR and extracted from the GIS78
6.1.3 Defining Common Elements ..79

6.2 Analysis of the Five Bridges ...80
6.2.1 Gladstone Port Access Road Overpass...81
6.2.2 Stewart Road Overpass ...86
6.2.3 South Johnstone River Bridge..89
6.2.4 Johnson Creek Bridge..94
6.2.5 Bridge over Ward River..96

6.3 Program and User Interface ...101
6.4 Utility of Present Results...102

7. SITE VISIT ... 103
7.1 Visit to Schools ...103
7.2 Bridge and Foreshore Visit ...107

8. FUTURE DIRECTIONS.. 110
8.1 CBR Engine..110
8.2 Building Applications ..110
8.3 Bridge Application...111

9. REFERENCES... 112
10. GLOSSARY... 115
11. APPENDICES.. 116

Appendix I Example of Delphi Database..116
Appendix II Example of Maintenance Database ...118
Appendix III Computation of distance between two points on the Earth’s surface............121
Appendix IV Java Classes for CBR code ...122
Appendix V Codes for Unit Testing (for class ComponentLifeTableInput)176

12. AUTHOR BIOGRAPHIES.. 182

 iii

List of Tables

Table 3.1 Summary of the average period to roof replacement or significant repair for

domestic houses in Southern Queensland .. 13
Table 3.2 Environment classifications ... 16
Table 3.3 Description of building elements for case definition ... 17
Table 3.4 Definitions of cleaning.. 18
Table 3.5 Values defined for Maintenance Similarity Index Ms.. 19
Table 3.6 Values of Cs for non-dirt accumulation zone ... 19
Table 3.7 Values for Cs in dirt accumulation zone... 19
Table 3.8 Values of Ls for Building Components ... 20
Table 3.9 Values for Ws (Time of Wetness similarity index) .. 21
Table 3.10 Values for Ms (marine salinity similarity index) .. 21
Table 4.1 Details of system scenario... 24
Table 4.2 Design decisions and their rationale .. 30
Table 4.3 Software modules in the situated CBR system .. 34
Table 4.4 Extension and modifications points within source codes ... 37
Table 4.5 Test scenarios and the key behaviours tested... 39
Table 5.1 Drying times for the gutter after significant wetting events ... 47
Table 5.2 Summary data ... 47
Table 5.3 Corrosion rate data from King et al. (2001). ... 57
Table 5.4 Inputs, parameters and details of mathematics within the Colorbond® degradation

model... 59
Table 5.5 Abbreviated meteorological data and estimated salt deposition rates.............................. 61
Table 5.6 Required Events for Failure ... 64
Table 5.7 Definition of Failure.. 64
Table 5.8 Legend of damage ratings for Gutter survey.. 66
Table 5.9 Summary of gutter survey to April 2005... 67
Table 5.10 Values of ψ defined for various parameter combinations... 71
Table 5.11 Constants for galvanised steel mass loss in State 2 .. 73
Table 5.12 Constants for galvanised steel mass loss in State 3 .. 73
Table 5.13 Additional constants for galvanised steel mass loss in State 3 .. 73
Table 5.14 Constants for Zincalume mass loss in State 2. .. 73
Table 5.15 Constants for Zincalume mass loss in State 3 ... 74
Table 5.16 Additional constants for Zincalume mass loss in State 3. .. 74
Table 5.17 Estimated mass loss at two locations in Queensland .. 74
Table 5.18 Comparison of Gutter Life by Model and other Methods.. 75
Table 6.1 A summary of computed results; salt depositions on the 9 zones for the 5 bridges in

DSC. u′/U is the upstream turbulence intensity and H:W is the height to width ratio
of the superstructure.. 81

 iv

List of Figures
Figure 2.1 A conventional case-based reasoning model (a) and a situation case-based

reasoning model (b)... 5
Figure 2.2 Conceptual model of memory construction (from Gero 1999).. 6
Figure 2.3 Recursive interpretations of a selected memory, experience or knowledge and the

environment... 8
Figure 2.4 Model of situated CBR applied to the prediction of atmospheric corrosion rate 9
Figure 2.5 Computation of corrosion rate through a series of process models and parameters

obtained from database lookups.. 10
Figure 3.1 Heterogeneous database with four different sets of data... 11
Figure 3.2 An example of a class 1 response in the Delphi survey... 12
Figure 3.3 An example of a class 2 response in the Delphi survey... 12
Figure 3.4 A representation of the many factors considered in the holistic model for corrosion........ 14
Figure 3.5 Structure of the modules of the holistic model ... 14
Figure 3.6 Levels of corrosion of zinc due to atmospheric pollutants .. 15
Figure 4.1 Use case outlining the overall usage of the system ... 22
Figure 4.2 Details of Calculate Component Life use case .. 23
Figure 4.3 Context diagram for the situated CBR system ... 25
Figure 4.4 Software architecture of the situated CBR system... 26
Figure 4.6 Key software components for interpretation and memory construction............................ 27
Figure 4.7 Interpretation cycle .. 27
Figure 4.8 Construction cycle ... 27
Figure 4.9 ASCII file coding of the data required for computing similarity index................................ 31
Figure 4.10 Relationships between different modules of the situated CBR system 34
Figure 4.11 Key classes in the implementation of the situated CBR system....................................... 35
Figure 4.12 Interactions between classes of the situated CBR system for a typical memory

construction process.. 36
Figure 4.13 Key execution paths for computing the similarity matrix... 40
Figure 4.14 Execution paths of different test scenarios .. 40
Figure 5.1 Representation of the three gutter elements.. 41
Figure 5.2 Location of Highett, a suburb of Melbourne ... 42
Figure 5.3 View of building used for instrumentation of the gutter .. 43
Figure 5.4 View of the inside of the gutter... 44
Figure 5.5 Placement of sensors in (a) clean and (b) dirty section of gutter 44
Figure 5.6 Graph of data from 15 - 19 February 2005 .. 46
Figure 5.7 Model for the degradation of Colorbond® materials. (a) A 50 mm diameter defect in

the organic coating is assumed, (b) chromate is leached from the primer due to the
presence of moisture and salts, (c) upon depletion of chromate inhibitor zincalume
is corroded with an aspect ratio of a/d = 50, (d) where d exceeds the thickness of
zincalume, surrounding zincalume is lost at an increased rate due to galvanic
corrosion. Steel corrosion is assumed to occur when g > 1 cm and zincalume no
longer provides sufficient galvanic protection for the underlying steel.............................. 52

Figure 5.8 Circular relationships determining metal degradation at a defect in a primer and
topcoat... 53

 v

Figure 5.9 Chromate depletion model. Depletion occurs directly from primer in defect and
through backing coat and to a lesser extent through the topcoat. 53

Figure 5.10 Dependence of photooxidation rate on latitude. Data from Bauer (2000) 54
Figure 5.11 The influence of chromate concentration on the corrosion current of zincalume at

varying chloride concentration. Shaded area represents the typical concentrations
of chromate during leaching. ... 56

Figure 5.12 Correlations between mass loss and average salt deposition rate for three sites.
Data from King et al. (2001)... 57

Figure 5.13 SEM cross-section showing typical damage at the site of a defect. Sample shown
was exposed to 35 cycles of GM9540P accelerated corrosion test. 58

Figure 5.14 Output data from Colorbond® degradation model, a) Flinders topcoat (left), backing
coat (right); b) Brisbane topcoat and backing coat; c) Cairns topcoat and backing
coat; d) Charleville topcoat and backing coat. Green line = remaining chromate,
blue line = mass loss of zincalume, red line = mass loss of steel.................................... 62

Figure 5.15 Graphical representation of the state of Galvanised gutters with age 69
Figure 5.16 Graphical representation of the state of Zincalume gutters with age................................ 69
Figure 5.17 Graphical representation of the state of Colorbond® gutters with age............................. 70
Figure 5.18 GUI developed for the Queensland schools' gutter application.. 76
Figure 6.1 The layout of zones on two typical bridge cross sections... 79
Figure 6.2 Locations of the five bridges analysed... 80
Figure 6.3 Tracks of 35 particles deposited on a salt candle in the same flow conditions as

those of the Gladstone Port Access Road Overpass. Wind flow is from left to right......... 82
Figure 6.4 The flow domain size and grid resolution used for the superstructure of the

Gladstone Port Access Road Overpass... 83
Figure 6.5 Volume fraction of salt around the superstructure of the Gladstone Port Access

Road Overpass; a) particles released within 1.4 metres of the mid-height, b)
particles were released between 1.4 and 2.8 metres of mid-height, c) all salt aerosol
particles. Flow is from left to right. Red is high concentration and blue is low
concentration. .. 84

Figure 6.6 The locations of the zones for the superstructure of the Gladstone Port Access
Road Overpass.. 85

Figure 6.7 Salt deposition on the Gladstone Port Access Road overpass measured relative to
the salt candle deposition .. 86

Figure 6.8 Volume fraction of salt around the superstructure of the Stewart Road overpass; a)
particles released within 1.4 m of the mid-height, b) particles released between
1.4m and 2.8m of mid-height, c) all salt aerosol particles. Flow is from left to right.
Red is a high concentration of salt, blue is low concentration. ... 88

Figure 6.9 Locations of the zones for the superstructure of the Stewart Road overpass 88
Figure 6.10 Salt deposition on the Stewart Road Overpass measured relative to the salt candle

deposition .. 90
Figure 6.11 Volume fraction of salt around the superstructure of the South Johnstone River

Bridge; a) particles released within 1.4 metres of the mid-height, b) particles were
released between 1.4 and 2.8 metres of mid-height, c) all salt aerosol particles. 92

Figure 6.12 Locations of the zones for the superstructure of South Johnstone River Bridge 93
Figure 6.13 Salt deposition relative to that on a salt candle for the South Johnstone River Bridge..... 93
Figure 6.14 Volume fraction of salt around the superstructure of the Johnson Creek Bridge; a)

particles released within 1.4 m of the mid-height, b) particles released between
1.4m and 2.8m of mid-height, c) all salt aerosol particles. Flow is from left to right......... 95

Figure 6.15 Location of zones for the superstructure of the Johnson Creek Bridge............................ 95
Figure 6.16 Salt deposition relative to that on a salt candle for the Johnson Creek Bridge................. 97

 vi

Figure 6.17 Distribution of salt for the Ward River Bridge ... 98
Figure 6.18 Locations of zones for the Ward River Bridge.. 98
Figure 6.19 Salt deposition relative to that on salt candle for the deck of the Ward River Bridge........ 99
Figure 6.20 Salt deposition relative to that on salt candle for the girders of the Ward River

Bridge .. 100
Figure 6.21 Initial Screen in Bridge program allowing selection of point in Queensland 101
Figure 6.22 Two frames of the GUI showing different bridge zones selected 102
Figure 7.1 Maps showing the location of the schools visited... 103
Figure 7.2 Rusting and deterioration at joins of gutters at Currimundi State School 104
Figure 7.3 Roof fasteners showing evidence of rust at Currimundi State School............................ 104
Figure 7.4 Contact between stainless steel strapping and Colorbond® roof is causing

deterioration of Colorbond®. Strapping not in contact is showing considerable
corrosion (Currimundi Special School)... 105

Figure 7.5 Triple grips and bolts on covered setdown showing evidence of red rust at
Currimundi Special School .. 105

Figure 7.6 Fasteners in sheeting under porch of Administration block at Talara Primary College... 105
Figure 7.7 Degradation of gutter at join to drainpipe at Talara Primary College. Pop rivets

have corroded away. ... 106
Figure 7.8 Underside of aluminium roof sheeting of covered walkway at Kawana Waters State

High School ... 106
Figure 7.9 Heavily corroded fastener in walkway at Kawana Waters State High School 106
Figure 7.10 Bridge on the David Low Way.. 107
Figure 7.11 View from the bridge showing proximity to the beach .. 107
Figure 7.12 Corrosion on support beam of bridge .. 108
Figure 7.13 White corrosion product on bridge railing... 108
Figure 7.14 Umbrella supports showing severe corrosion .. 109
Figure 7.15 Plaque showing "tea staining" from corrosion .. 109

 1

EXECUTIVE SUMMARY

The project has applied the concept of case-based reasoning to prediction of lifetime for
metallic building components. This was considered a suitable method to combine a range of
different data sources and determine the most appropriate answer for any given situation.

Discussions with the project partners identified two areas of particular interest for formulation
of initial applications.

The project has delivered:

• Design and implementation of a case-based reasoning (CBR) engine for life
prediction of metallic building components in general,

• An application of the CBR engine tailored to predicting durability of gutters in
Queensland schools,

• A stand-alone program for modelling the degradation rate of gutters using the CSIRO
holistic model,

• A stand-alone program for estimating salt deposition levels on bridge structures in
Queensland to be used as the basis for a CBR program in the future, and

• A report on the Sunshine Coast site visit to school and bridge locations, which has
identified several corrosion problems of interest to the industry partners.

The implementation of the CBR engine necessitated characterisation of the environment and
building locations to enable development of case definitions. Similarity rules were formulated
for a number of parameters so that different cases could be compared and the closest match
selected.

The QDPW application incorporates several sources of data for access by the CBR engine.
These include the Delphi survey (from Project 2002-010-B), maintenance information from
the QDPW and the holistic model. The holistic model required modifications to tailor the
outputs for use with gutters. The three main materials currently used in gutters are
galvanised steel, Zincalume and Colorbond® so rules for the degradation of polymeric
coatings had to be determined and included in the model for use with Colorbond®. In
addition, experiments were carried out to determine an appropriate ‘Time of Wetness’ factor
for different gutter states, given that they are a building component where dirt can
accumulate and affect the run-off of water and drying rate. The modelling calculations result
in a mass loss per year for metals so this had to be related to a predicted life span, with
consideration also given to whether this is aesthetic life or service life. These modifications
to the holistic model were incorporated into a stand-alone program which can be used to
estimate degradation of gutters at any location in Australia.

The QDMR application is not as advanced as the gutter application. The project team has
focussed on the definition of structural elements of five typical Queensland bridges to define
representative cases which could be used in a future extension into CBR. A detailed CFD
analysis of salt deposition on the five bridge structures has been carried out and elements
with common deposition rates were identified. A stand-alone program has been developed
that will estimate a salt deposition factor for a selected bridge element at any location in
Queensland.

 2

The development of these applications will provide economic benefits to the two industry
partners. These are difficult to quantify but contain elements of design savings and
maintenance savings for facility owners, managers and maintenance providers. The
potential for the tools is significant given the amount of metal used in the areas of interest
and the levels of corrosion found in the project site visit to the Sunshine Coast. It has been
estimated that nearly $5 million was spent by Queensland Department of Public Works in
03/04 in replacing corroded metallic components of Queensland schools. Substantial cost
savings can be made through the use of the S/W tool to select construction materials suited
to the environment in which they will be used, and optimisation of maintenance schedules.

 3

1. INTRODUCTION

1.1 Background

Many processes in design, construction and maintenance of infrastructure are complex and
highly influenced by a wide range of design, climate and usage parameters. For example
predicting corrosion rates, and hence component life, is a complex process which includes
reasoning about examples in which corrosion rates are known, knowledge of the material
properties and the impact of the environment on those materials, and an interpretation of the
site.

The ability to accurately predict the lifetime of building components is crucial to optimising
building design, material selection and scheduling of required maintenance. ISO 15686
(Clause 9) has suggested the factor method as a means of estimating the service life of a
particular component or assembly in a specific set of conditions. The factor method is based
on a reference service life (RSL), which is defined as the expected service life of a
component or assembly situated in a well-defined set of conditions. It incorporates a series
of modifying factors that relate to the specific conditions of the case to give the predicted
service life distribution of a component (PSDLC) according to the equation:

PSLDC = RSLC · fA · fB · fC · fD · fE · fF · fG …Eqn 1.1

The factor indices relate to quality of the component, design, work execution, environments
etc. The problem still remains, however, of defining the reference service life for a vast array
of building components.

Two approaches have been used in the past to predict the corrosion process - statistical and
process-based models. Statistical models have proven unable to cope with the complexity of
the problem. Studies have demonstrated that statistical models of component life though
useful are extremely limited in their application and cannot predict outside the data sets used
to generate the models. Thus a statistical model of life of reinforced concrete in bridges in
inland NSW is unlikely to be useful for predicting life for the same bridges on the coast and
could not predict life of reinforced concrete in buildings etc.

Process-based models are much more flexible, for example the Construction Mapping
System (CMS) developed by CSIRO can predict the life of galvanised steel within any
building anywhere in the country. This method is based on the holistic model, within which
processes controlling corrosion across a wide range of physical scales and based on
different phenomena are modelled. A solution to component life prediction is generated by
post-processing the corrosion rate obtained from combining different modules defining
specific processes through first principles. Although the theoretical component life of a
component can be calculated for any applicable area within Australia, the accuracy of this
result reduces dramatically when input data crosses the boundary conditions of the model.

 4

1.2 Problem Definition

The problem is to combine the two approaches to corrosion prediction so that a variety of
sources of data, from studies, from experience and from first principles using the holistic
model, can be combined to form the basis of the lifetime prediction tool. In addition, once the
predicted lifetime for a particular situation has been determined, then this should be available
for future reference. Thus, the required system must be able to store, manipulate and
compare numerous use-case scenarios. Case-based reasoning is seen as an ideal method
for linking together the different data sources and reusing previous experiences in the current
context to solve new problems.

The Queensland Department of Public Works and Queensland Department of Main Roads
require a means to predict the life of building components subjected to atmospheric
corrosion. This tool will form the basis for maintenance optimisation and risk assessment
used in developing asset replacement and repair strategies. In particular the software tools
to be developed by this project will provide information on life prediction of gutters (as used in
Queensland state schools) and life prediction of metal components in Queensland bridges.

The development of these applications will provide economic benefits to the two industry
partners. These are difficult to quantify but contain elements of design savings and
maintenance savings for facility owners, managers and maintenance providers. The
potential for the tools is significant given the amount of metal used in the areas of interest
and the levels of corrosion found in a site visit carried out in September 2004 as part of the
project. It has been estimated that nearly $5 million was spent by Queensland Department of
Public Works in 03/04 in replacing corroded metallic components in Queensland schools.
Substantial cost savings can be made through the use of the project software tool to select
construction materials suited to the environment in which they will be used.

The development of these two applications is discussed in this report, starting with a
discussion of the benefits of situated case-based reasoning in Chapter 2. Chapter 3 looks at
how this can be applied to the prediction of corrosion rates for metal building components in
general. This is followed by the documentation of the design and implementation of the CBR
engine in Chapter 4. The development of the two specific applications for the CRC industry
partners are discussed in Chapters 5 and 6. The site visit to selected schools and bridges on
the Sunshine Coast is summarised in Chapter 7 and suggestions for future extensions of the
work are addressed in Chapter 8.

 5

2. SITUATED CASE-BASED REASONING MODEL

2.1 Definition

Case –based reasoning (CBR) provides a model for design reasoning based on the use of a
set of previous design experiences represented as design cases (Maher et al 1995). These
cases are indexed and retrieved using information about a current design problem, and then
through analogical reasoning, a selected case (or set of cases) is adapted until it satisfies the
current design specifications and constraints. One aspect of design reasoning that is not
addressed by traditional models for case-based reasoning is that designing is situated (Gero
1998). To accommodate the notion of situatedness in designing, the basic idea of case-
based reasoning is extended to create a model of situated case-based reasoning (situated
CBR) Figure 2.1, based on a model of constructive memory that operates within a framework
of situatedness.

Figure 2.1 A conventional case-based reasoning model (a) and a situation case-based reasoning model (b)

In the situated CBR model, instead of focusing on just the design problem and finding a
solution to it, emphasis is also given to the environment within which the problem is framed.
The model interprets the environment according to the current situation and the problem is
framed accordingly. This interpretation is dependent on the current environment, the internal
state of the situated CBR system and the interactions between the system and the
environment.

The internal state of a situated CBR system is defined by its content. This content is made
up of individual entities that are classified either as experience or knowledge. Interactions
between the system and the environment define different interpretations of the environment
according to different interpretations of the selected entities used for memory construction.

A distinctive characteristic of situated CBR is the way the knowledge and experience are
understood and used. In CBR, retrieved cases provide a solution or a starting point for case

Case Base
(Experience)

New Solution

New Problem

Recall

Select

Index

Retrieve

Adapt

Modify

Evaluate

(a)

Knowledge

New Solution

Environment

Interpret

Construct
Memory

Experience

(b)

Case Base
(Experience)

New Solution

New Problem

Recall

Select

Index

Retrieve

Adapt

Modify

Evaluate

Case Base
(Experience)

New Solution

New Problem

Recall

Select

Index

Retrieve

Recall

Select

Index

Retrieve

Adapt

Modify

Evaluate

Adapt

Modify

Evaluate

(a)

Knowledge

New Solution

Environment

Interpret

Construct
Memory

Experience

Knowledge

New Solution

Environment

Interpret

Construct
Memory

Experience

(b)

 6

adaptation. In Situated CBR, the memory of an experience and/or knowledge (entities) is
constructed according to an interpretation of the environment and an interpretation of the
selected entities relevant to the problem at hand. Rather than adapt a selected case to new
design specifications, the selected entities are interpreted according to the interactions
between the system and the environment. These interactions provide a specific view
(interpretation) of the relationship between the design specifications and the environment.
This view dictates another interpretation of the environment that can introduce new
specifications. This “feedback” loop causes the interpretations of the environment and the
selection of experiences and knowledge to occur recursively until a common interpretation is
reached.

The recursive interpretations of the environment and the selected entities result in new
memories as well as new indices to the selected experiences and knowledge to be created.
Memories are constructed by:

• instantiating the parameter values of the selected entities according to the current
situation;

• mapping existing parameters in the selected entities to new ones through an
analogical process; and

• restructuring the selected entities according to the current situation.

This is similar to creation of new functional or behavioural indices to an old design prototype
within the domain of situated analogy (Gero and Kulinski, 2000).

2.2 Constructive Memory Model

Figure 2.2 illustrates a conceptual model of memory construction. Memories are constructed
according to the environment, the knowledge and experience of a situated computational
system and the interactions between the system and the environment.

Figure 2.2 Conceptual model of memory construction (from Gero 1999)

KNOWLEDGE EXPERIENCE

ENVIRONMENT

SITUATION

MEMORY

Memories, knowledge or
experiences activated in the
current memory construction

SITUATION Current situation creating a
cue for memory construction

Activated memory, knowledge or
experience selected as a basis for
the current memory construction

External environment, past memories,
knowledge and previous experiences
creating the current situation for
memory construction

SITUATION

KNOWLEDGE EXPERIENCE

ENVIRONMENT

SITUATION

MEMORY

KNOWLEDGE EXPERIENCE

ENVIRONMENT

SITUATION

MEMORY

Memories, knowledge or
experiences activated in the
current memory construction

Memories, knowledge or
experiences activated in the
current memory construction

SITUATION Current situation creating a
cue for memory construction

SITUATIONSITUATION Current situation creating a
cue for memory construction

Activated memory, knowledge or
experience selected as a basis for
the current memory construction

Activated memory, knowledge or
experience selected as a basis for
the current memory construction

External environment, past memories,
knowledge and previous experiences
creating the current situation for
memory construction

SITUATION

External environment, past memories,
knowledge and previous experiences
creating the current situation for
memory construction

SITUATIONSITUATION

 7

Knowledge can be considered as general facts that can refer to a generalised or compiled
construct. (Rosenman et al. 1991) such as a design prototype (Gero 1990) that collects
function, behaviour and structure information related to designing within a single
representation. Methods to acquire knowledge include:

• Abstraction over classes of objects, as in the case of design prototypes,

• Generalisation over facts as in the case of design guidelines (Boothroyd 1994), rules
(Witten and Frank 2000) or formulas; or

• Direct learning from external sources such as books, domain experts.

The generic nature of knowledge implies that it does not carry with it any particular solution.
A particular situation has to be fitted to the knowledge and a solution has to be inferred from
it.

Experience refers to previous episodes recorded in or encountered by the system. It entails
the system’s involvement as the “first person” in dealing with the substance of that episode.
This form of experience can refer to experimental data collected under controlled conditions
or to information obtained by data logs.

Memory is a construct created “here and now” for the purpose of operating within the current
environment according to a design goal. Knowledge and experience provide the base for
constructing a memory according to the current situation.

Memory construction commences with the current situation providing the cue to start off the
process. Related knowledge and experience are activated according to the cue and the
relevant knowledge and experience are selected as a basis for memory construction. After
this selection, the environment and the selected experience are recursively interpreted to
construct a memory. This memory contains the required actions to be effected to the
environment according to the current design goal. Each memory, after it has been
constructed, is added to the system as a new experience by augmenting its representation
experience. This new experience is available for subsequent memory constructions.

2.3 Framework of Situatedness

The model of constructive memory resides within the framework of situatedness in designing
(Liew and Gero 2004). This notion of situatedness encompasses the fundamental ideas of
interaction, memory construction and interpretation.

Interaction implies that the content of a situated CBR system are not encoded a priori and
indexed for use later, but rather the content of the system is developed through interactions
with the environment. The development of this content entails the construction of a memory
about related entities, influenced by any knowledge and experience gained since the entities,
and interpreted by the prevailing situation.

Memory construction provides the basis for the recursive interpretation of the current
situation. This process of constructing new memory is similar to the notion of “re-
representation” described in Gero and Kulinski 2000. A constructed memory defines both
the interpretation of the relevant content and the interpretation of the environment in light of
the current interactions between the system and the environment. The content of the
situated CBR system is interpreted through a “filter” defined by the present situation. An

 8

experience and/or knowledge is not “copied” into the present but rather it is interpreted
according to the current situation. This interpretation situates the relevant content of the
system through the current environment so that it is not necessary to encode all possible
forms of know-how a priori. New interpretations of past knowledge and experience is
produced by every constructed memory of these entities. This new interpretation is added to
the memory system as a new experience and is interpreted later as if it were part of the
original content of the system.

A constructed memory also interprets the environment according to the current expectation
of the system. This expectation is derived from the goal of the system captured within the
relevant entities selected for memory construction. The expectation dictates what is to be
focused upon, and the way the environment is to be interpreted in order for the system to
perform its task according to its goal.

2.3.1 Recursive Interpretations

Figure 2.3 illustrates the recursive interpretations between the environment and the selected
experience and/or knowledge used for memory construction. Both the environment and the
selected entities are interpreted through the lens of the current interaction in this recursive
fashion. The recursion behaviour is resolved when the interpretations of the environment or
selected entities remain the same after a complete cycle of interpretations: interpretation of
the environment or selected entities followed by an interpretation of the selected entities or
environment. The final constructed memory provides a coherent interpretation of the
environment and of relevant knowledge and experience within a single cohesive structure.

Figure 2.3 Recursive interpretations of a selected memory, experience or knowledge and the environment

After the successful interpretation of the environment and selected entity, the actions that
were performed previously are transformed into a suitable form for the current situation and
effected into the environment, as external actions, or to the system, as internal actions, to
perform the necessary task according to the current goal of the system.

ENVIRONMENT

SELECTED
KNOWLEDGE

and/or
EXPERIENCE

Interpretations of the selected entities provide
the basis for interpreting the environment

Interpretation of the environment provides the
basis for interpreting the selected entities

MEMORY
CONSTRUCTION

ENVIRONMENT

SELECTED
KNOWLEDGE

and/or
EXPERIENCE

Interpretations of the selected entities provide
the basis for interpreting the environment

Interpretation of the environment provides the
basis for interpreting the selected entities

MEMORY
CONSTRUCTION

 9

2.4 Using Situated CBR for Prediction of Corrosion Rates

The situated CBR model will be used to design a system that predicts the atmospheric
corrosion of building materials as shown in Figure 2.4. Predicting corrosion rates is a
complex process which includes reasoning about examples in which corrosion rates are
known, knowledge of the material properties and the impact of the environment on those
materials, and an interpretation of the site in which the material is located.

The local conditions of the site in which the material is located are used to determine the
environmental component of the situated CBR system. Parameters within this environment
are used to select previous experiences and/or knowledge from the system for memory
construction. A memory is constructed based on a combination and interpretation of
previous experiences that can be used to predict the atmospheric corrosion rate of a specific
material on a specific site.

Figure 2.4 Model of situated CBR applied to the prediction of atmospheric corrosion rate

Holistic Model
(Knowledge)

Predicted
Corrosion

Rate
(New Solution)

Location /
Material … etc.

(Environment)

Interpret

Construct
Corrosion Rate

Corrosion Rate
Corrosivity Map
Partial Models

(Experience)

A selected experience may be relevant if a corrosion rate has already been calculated in a
similar situation. The differences in conditions are examined to see if they are significant to
warrant additional interpretation and computation. If a selected previous experience is based
on experimental data, additional knowledge may be needed to interpret the implications of
the differences between the experimental situation and the current situation or site
conditions.

If a relevant experience is not close enough to the current site conditions, the relevant
knowledge may be used in the form of a holistic model that computes a corrosion rate
through first principles. When used as a basis for memory construction, the corrosion rate is
computed through a series of process models or database lookups of collected field data as
shown in Figure 2.5.

 10

During the course of memory construction, the environmental conditions are reevaluated
according to the relevant experience used for memory construction. The relevant experience
can shift the focus to different aspects of the environment according to the critical features of
the selected experience and thus introducing new specifications. New indices to the
selected experience are created when the experience is found to be applicable to similar
situations and when the experience is restructured according to the interactions with the
environment.

Figure 2.5 Computation of corrosion rate through a series of process models and parameters obtained from

database lookups

Micro
Climate

Salt
Production

Model

Corrosion
Rate

Sample Layout
of a Building

Surface
State

Local
Climate

General
Climate

Material
Properties

Salt
Transport

Model

Local
Deposition

…

…
Washing
Retention

Rain Size
Deposition

Database

Parameter

Process Model

Information Flow

1

4

2

5

3

6 7 8

9 10 11

 11

3. SITUATED CBR FOR PREDICTION OF CORROSION
RATES

3.1 Components

The aim of the software tool being developed is to facilitate the accessing of a range of
sources of information about corrosion and lifetime estimates for building materials. Thus the
components are the various data sources (databases) and the case-based reasoning engine
that will provide the linkage between them and reasoning ability to choose the appropriate
instances from the various examples. The various sources of information available to the
project and included in the software tool are displayed in Figure 3.1 and described in the
following sections.
Figure 3.1 Heterogeneous database with four different sets of data

3.1.1 Delphi Database

The CRC for Construction Innovation has developed a database of predicted lifetimes for a
range of metallic building components derived from expert opinion in the project 2002-010-B.
A detailed description of this project and its outcome can be found in the final report for the
project. (Cole et al., 2004)

3.1.1.1 The Delphi Technique

A Delphi survey is a structured group interaction process that is directed in ‘rounds’ of
opinion collection and feedback. Opinion collection is achieved by conducting a series of
surveys using questionnaires. The result of each previous survey will be the basis of the
formulation of the questionnaire used in the next round. The Delphi technique is an
established method for obtaining consensus and has been used in a variety of professional
settings.

Professionals such as builders and architects were the primary respondents to the survey.
They were selected on the basis of their practical experience and theoretical knowledge.
Building material suppliers were also invited to participate in the survey for their intimate

Maintenance Data

 12

knowledge of their specific products. Academics and scientist were also included because it
is believed that they understand scientific principles in areas that are related to material
durability, and so their expertise was relevant to the construction of a durability model. The
survey was conducted via the Web to allow respondents to answer questions at a time
convenient to them.

The survey included both service life (with and without maintenance) and aesthetic life, and
time to first maintenance. It included marine, industrial and benign environments and
covered both commercial and residential buildings.

3.1.1.2 Classification of Responses

Respondents were asked to gauge the life expectancy of a range of building materials in the
different categories with answers given in year brackets: <5, 5-10, 10-15, 15-20, 20-30, 30-
50, and >50 years. Responses were analysed and classified as to the level of agreement
found between respondents. A class 1 response had more than 50% of answers in one year
bracket, a class 2 response had more than 50% in two adjacent year brackets, a class 3
response had more than 50% of responses in three adjacent year brackets and a class 4
response showed little agreement. Examples of class 1 and class 2 responses are shown in
Figure 3.2 and Figure 3.3.

Figure 3.2 An example of a class 1 response in the Delphi survey

Figure 3.3 An example of a class 2 response in the Delphi survey

Life Expectancy of Plumbing pipework (Hot dip galv
steel) without maintenance in a Marine Environment

0 0.2 0.4 0.6 0.8

< 5

10 to 15

20 to 30

> 50

Life Expectancy of Purlins, Galv steel (Z275) w ith ceiling
lining, w ithout maintenance in an Industrial

Environment

0 0.05 0.1 0.15 0.2 0.25 0.3

< 5

10 to 15

20 to 30

> 50

 13

Class 3 and 4 responses were used as the basis for the second round of questions to try to
reduce the level of uncertainty. After assessing all answers and considering the level of
agreement amongst respondents, the predicted life was stored in the database in two forms:
the mode and the mean as well as a standard deviation for the mean. Around 85% of all
answers were fell in class 1 or 2 and were considered acceptable for inclusion in the
database.

Components covered by the database are a representative subset of building materials
ranging from nails and ducting through to roofing, window frames and door handles. Not all
situations are covered as the components were limited to 30 and only those situations where
good agreement between the experts was found were included in the database. An example
of the information stored in the database is given in Appendix I.

3.1.1.3 Validation of the Delphi Database

The final database was examined in three ways to determine its accuracy and reliability.
These were:

• analysis for internal consistency of the data (eg. would expect similar results from
residential and commercial buildings),

• analysis for consistency with expected trends based on knowledge of materials
performance (eg. stainless steel should last longer than galvanised steel) and
environmental severity (eg. a roof in a benign location should last longer than one in a
marine location), and

• correlation with existing databases on component performance.

In all of these comparisons, the Delphi survey data showed good agreement.

3.1.2 Queensland Department of Housing - Maintenance Database

CSIRO has, in conjunction with the Queensland Department of Housing (outside this
project), analysed over 10,000 records with regards to significant maintenance. A sample of
the data is presented in Appendix II. In Table 3.1 a summary of the average period to roof
replacement or significant repair is given for domestic houses in southern Queensland.

Table 3.1 Summary of the average period to roof replacement or significant repair for domestic houses in

Southern Queensland
Environment Mean (Years) SD (Years)

Marine 16 5

Benign 41 4

3.1.3 Holistic Model

Through many years of research, CSIRO has developed a holistic model for corrosion which
is based on an understanding of the basic corrosion processes ranging in scale from atomic
electrochemical reactions to the macro scale of continental environmental factors (Figure
3.4).

 14

Figure 3.4 A representation of the many factors considered in the holistic model for corrosion

The overall model consists of three broad groups of modules: microclimate models,
material/environment interactions and damage or corrosion models. These are illustrated in
Figure 3.5.

Figure 3.5 Structure of the modules of the holistic model

The model starts from an understanding of climatic conditions pertinent to corrosion that
include moisture, prevailing winds, salinity and pollution. This has been used to produce a
Geographical Information System which models sources and distribution patterns of natural
and man-made pollutants across Australia and combines this knowledge with an
understanding of the physical responses of surfaces. Corrosion maps of Australia have been
created from this model. This is illustrated for zinc in Figure 3.6.

 15

Figure 3.6 Levels of corrosion of zinc due to atmospheric pollutants

The holistic model forms another source of information for predicting the lifetime of metallic
building components. Once the geographical position is specified, salt deposition levels can
be determined. Modifications can be made according to the type and positioning of the
element (see case definition below) and how this affects the climatic factors.

It may also be necessary in some applications to carry out further modifications to the
algorithms of the holistic model to allow more accurate calculations to be made. This was
done for the gutter application presented in this report (and discussed in Section 5.2).

3.2 Definition of Cases

Intrinsic to the use of case-base reasoning is the definition of the attributes for cases for a
particular application. Cases need to be defined such that the CBR engine can search the
casebase and other databases for examples relevant to the current case. In the application
for lifetime prediction, parameters relevant to component degradation need to be considered
and defined.

For metallic building components the important parameters for determining the corrosion rate
include the component type, material type and the environmental conditions. A detailed
review of corrosion degradation models for metallic components used in building materials
was carried out and is summarised in CRC Report 2002-059-B No. 5 “Corrosion Degradation
Models for Metallic Building Components”.

Materials in common use include:

• steel and steel alloys (bare and painted)
• zinc and zinc alloys (bare and painted)
• aluminium alloys.

 16

The parameters identified to control corrosion degradation rates are summarised as:

• Time of wetness
• Chloride concentration
• Sulfur dioxide concentration (or deposition of other sulfur impurities)
• Ozone concentration
• Temperature
• pH of precipitation
• Volume of precipitation
• Deposition of dust
• Nitrogen oxide (NOx) concentration

These parameters are all strongly dependent on geographic location, with climate and local
industry level of paramount importance. Once the macroclimate has been identified then the
rate of corrosion will also depend on placement within the building eg internal or external, if
external then whether sheltered or exposed etc. A final parameter of importance is whether
the building element is subject to regular maintenance. Maintenance includes cleaning and
repainting but does not extend to replacement of the building component.

3.2.1 Characterisation of Environment

For the purpose of corrosion the environment needs to be characterized in terms of the
pollutant, RH and type of rainfall. This is summarised in Table 3.2.

Table 3.2 Environment classifications
Pollutant RH Rainfall

Severe Marine Very Humid Frequent and Heavy

Marine Humid Frequent and Light

Severe Industrial Standard Standard and Heavy

Moderate Industrial Standard Standard and Light

Industrial Dry Infrequent and Heavy

Benign Very Dry Infrequent and Light

In addition, for the severe marine, marine, severe industrial and industrial classifications the
neighbourhood must also be considered with the following classifications based on how the
surrounding land use affects pollutant transport:

• Grassland,

• Urban,

• Forest,

• High rise

 17

3.2.2 Detailed Building Characterisation

3.2.2.1 Location in Building

Building structures have been considered with regard to the situations that will affect the
amount of aerosol deposition of pollutants. Thus building locations have been divided into
twelve types and these are listed in Table 3.3.

Table 3.3 Description of building elements for case definition
Case Description

Open Rooftop The top of any surface that bridges between the tops of two or more walls and has an average
slope of 45 degrees or less. This includes flat, hip, gable, monoslope, multispan, sawtooth,
arched mansard and conical roofs. It includes projections and indentations of 0.3 metres or
less. The roof is to have a minimum dimension of at least two metres.

Open Wall Any flat non-sheltered surface with a slope of less than 45 degrees off vertical including any
projections or indentations that depart less than one metre from planarity. The wall is to have
minimum dimension of at least one metre. Also includes bridge piers.

Sheltered Wall Any area that is covered with a covering that stops all direct sunlight when the sun is less than
45 degrees from the zenith

Edges and
External corners
of walls or roofs

Comprises the area within one metre of any external corner. This excludes re-entrant corners,
corners on isolated steelwork, and corners on some roofs (such as saw-tooth roofs). The
angle of the external corner is to be between 0 and 135 degrees. It includes corners of bulk
objects projecting from roofs.

Dirt
Accumulation
Zone

Any area in which water, dirt, leaves or dust can accumulate. This surface usually has an
angle of less than 3 degrees to the horizontal but as corrosion develops it can grow to
encompass much steeper angles

Roof cavity Any object lining or found within the cavity between the ceiling and roof of a building.

Wall cavity Any object lining or found within the cavity between the inner and outer walls of a building.
Also includes cavities in multistorey buildings between the false ceiling and the floor above.

Moisture
Accumulation
Points in Wall
Cavities

e.g bottom Plates

Underfloor
cavity

Any object lining or found within the space under the ground floor of a building. Excludes any
such space that is artificially heated or ventilated.

Semi-enclosed
space

Seem most frequently as a lower floor in a multistorey car park. Defined as any object in a
space with at least one large opening to the atmosphere. Excludes any such space that is
artificially heated or ventilated.

Enclosed room Includes rooms in domestic residences, commercial establishments, factories and
warehouses, and elsewhere. Estimating the corrosion in an enclosed room requires further
information on heating, artificial ventilation, and local sources of aerosols, gases and moisture.

3.2.2.2 Cleaning

Corrosion is also affected by how much of any pollutant deposition can be removed by the
natural cleaning of rain, condensation and wind. Classifications with regard to cleaning
levels are listed in Table 3.4.

 18

Table 3.4 Definitions of cleaning
Case Description

Open Rooftop Any area exposed to sun and rain with a slope between 3 degrees and 45 degrees (but see
(6) below

Open Wall Any area that is not sheltered with a slope of less than 45 degrees off vertical.

Sheltered Any area that is covered with a covering that stops all direct sunlight when the sun is less than
45 degrees from the zenith.

Crevice Any gap small enough for capillary attraction to drag water upwards

Drop-off Zone Any area from which water will drop. This typically occurs under the edges of overhangs

Dirt
Accumulation
zone

Any area in which water, dirt, leaves or dust can accumulate. This surface usually has an
angle of less than 3 degrees to the horizontal but as corrosion develops it can grow to
encompass much steeper angles.

3.2.2.3 Maintenance

If a metallic building element is subject to a regular maintenance schedule that will pick up
and deal appropriately with the first signs of corrosion, then it is likely to last longer than one
that is not maintained in the same situation. Thus maintenance (or lack of) is considered an
important parameter for definition of a case. It is particularly an issue for building
components, such as gutters, where dirt and debris can collect over time and affect drainage
and the rate of drying after rainfall or condensation.

3.3 Defining Case Similarity

When the liftetime prediction tool is presented with a new case, it will search through the
casebase library to find similar cases that have already been constructed. Whilst it is
possible that a stored case may exist that matches all the case parameters exactly, it is more
likely that some variation will occur. Thus it is necessary to have some method of defining
how similar the new case is to each of those stored in the casebase and extracting the cases
considered most ‘similar’.

Similarity between cases must be based on similarity in the attributes that affect the
corrosion rate of the building materials under consideration ie.

• Geographic location

• Location in Building

• Maintenance, and

• Cleaning

Overall, a similarity number (S) will be defined, where:

 S = Ms x Cs x Ls x Gs … Eqn 3.1

Where:

 Ms is a measure of similarity in Maintenance, the Maintenance similarity index,

 Cs is a measure of similarity in Cleaning, the Cleaning similarity index

 19

 Ls is a measure of similarity in Location in Building, the Location similarity index and

 Gs is a measure of similarity in geographic location, the geographic similarity index.

If two parameters match exactly, the similarity index will equal 1. If two parameters are
different but have similar effects on the likely corrosion rate, then the similarity index will be
close to 1 (0.8-0.9). The lower the similarity index, then the greater the difference between
the two situations in terms of likely corrosion rates. Since the individual similarity indices are
multiplied together to provide the overall similarity index S, variations in individual indices
result in a cumulative lowering of S. The cut-off point for S at which a case is not retrieved
from the casebase can be defined to broaden or narrow the cases chosen.

Values for the similarity indices have been defined and are discussed in the following
sections. At this stage of the project development, not all cases have been considered, so
only a subset (relevant to the gutter application) are presented.

3.3.1 Maintenance

At this stage there are only two values for Maintenance: maintained or not maintained. For
comparison between cases, the values in Table 3.5 are assigned for Ms, the maintenance
similarity parameter.

Table 3.5 Values defined for Maintenance Similarity Index Ms
 New Case

Old case
Maintained (M1) Not Maintained (M0)

Maintained (M1) 1 0.7

Not Maintained (M0) 0.7 1

3.3.2 Cleaning

The most important aspect for cleaning is considered to be whether or not the building
component is in a dirt accumulation zone. If two cases do not match in this aspect then Cs =
0. If they do match then Cs is assigned values according to Table 3.6 and Table 3.7,
depending on whether maintenance is available or not.

Table 3.6 Values of Cs for non-dirt accumulation zone
 New Case

Old case
Maintained (M1) Not Maintained (M0)

Maintained (M1) 1 0.9

Not Maintained (M0) 0.9 1

Table 3.7 Values for Cs in dirt accumulation zone
 New Case

Old case
Maintained (M1) Not Maintained (M0)

Maintained (M1) 1 0.7

Not Maintained (M0) 0.7 1

 20

3.3.3 Location in Building (Ls)

For the building components defined in Section 3.2.2.1 the similarity index Ls is defined in
Table 3.8.

Table 3.8 Values of Ls for Building Components
 Building Location - New case

Old
case

1 2 3 4 5 6 7 8 9 10 11 12

1 1 0.8 0.7 0.7 0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.5

2 0.8 1 0.8 0.7 0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.5

3 0.7 0.8 1 0.8 0.6 0.5 0.5 0.6 0.6 0.7 0.8 0.5

4 0.7 0.7 0.8 1 0.7 0.5 0.5 0.6 0.6 0.7 0.8 0.5

5 0.7 0.6 0.6 0.7 1 0.5 0.5 0.6 0.6 0.8 0.7 0.5

6 0.5 0.5 0.5 0.5 0.5 1 0.9 0.8 0.7 0.5 0.5 0.8

7 0.5 0.5 0.5 0.5 0.5 0.9 1 0.9 0.8 0.6 0.6 0.7

8 0.6 0.6 0.6 0.6 0.6 0.8 0.9 1 0.9 0.7 0.7 0.6

9 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.9 1 0.8 0.8 0.5

10 0.7 0.7 0.7 0.7 0.8 0.5 0.6 0.7 0.8 1 0.7 0.5

11 0.7 0.7 0.8 0.8 0.7 0.5 0.6 0.7 0.8 0.7 1 0.6

12 0.5 0.5 0.5 0.5 0.5 0.8 0.7 0.6 0.5 0.5 0.6 1

3.3.4 Geographic Location (Gs)

The most important aspect for geographic location is considered to be whether or not the
specified case is in a marine environment or not (benign, salinity < 15 mg/m2.day). If two
cases do not match in this aspect then Gs = 0.

If two cases being compared are both non-marine then:

Gs = 1 if they are within 20 km of each other, and

Gs = 0.9 if they are within 50 km of each other.

For two marine cases or non-marine cases > 50 km apart then Gs is assigned values
according to:

 Gs = Ws * Ms …Eqn 3.2

where Ws is the time of wetness similarity factor (defined inTable 3.9) and Ms is the marine
salinity factor (defined in Table 3.10).

 21

Table 3.9 Values for Ws (Time of Wetness similarity index)
 New case-TOW (%)

Old case-TOW(%) 0 to 19 20-39 40-59 60-79 80-100

0 to 19 1 0.8 0.7 0.6 0.5

20 to 39 0.8 1 0.8 0.7 0.6

40 to 59 0.7 0.8 1 0.8 0.7

60-79 0.6 0.7 0.8 1 0.8

80-100 0.5 0.6 0.7 0.8 1

Table 3.10 Values for Ms (marine salinity similarity index)
 New case-Salinity mg/m2.day

Old case-
Salinity
mg/m2.day

<5 5 – 15 16-40 41-100 101-300 >300

<5 1 0.8 0.7 0.6 0.5 0.4

5 -15 0.8 1 0.8 0.7 0.6 0.5

16 40 0.7 0.8 1 0.8 0.7 0.6

41 -100 0.6 0.7 0.8 1 0.8 0.7

101 - 300 0.5 0.6 0.7 0.8 1 0.8

> 300 0.4 0.5 0.6 0.7 0.8 1

3.3.4.1 Computation of Distance between Two Points on the Earth’s Surface

Due to the near spherical shape of the Earth (an oblique spheroid), spherical geometry and
trigonometric mathematical functions are required to calculate an accurate distance between
two points on the surface of the earth. The equations are given in Appendix III.

 22

4. DESIGN AND IMPLEMENTATION OF SITUATED CBR
FOR CORROSION PREDICTION

4.1 Specification and Design

4.1.1 Definition of Problem

The aim of the project is to improve the accuracy of component life prediction through the
use of a situated CBR system that operates upon its knowledge and experience. The holistic
model will be used to provide the required knowledge for computing the life building
components through first principles. A number of databases of component life derived from
expert opinion, research and maintenance data will provide a repository of experiences on
component life predictions of certain components under specific conditions. A case base of
previously constructed memory will provide a repository of experiences that predict
component life based on combining the results from the holistic model and databases.

The project has focused on the creation of the software architecture for component life
prediction based on situated CBR. The architecture provides a structure for utilising existing
knowledge and experiences to reason about the current situation (interpretation) and
construct a solution to component life prediction (construction).

The software has been designed with consideration for the two applications specified by the
project’s industry partners:

• Gutters in Queensland schools for the Queensland Department of Public Works, and

• Bridges in Queensland roads for the Queensland Department of Main Roads.

The design of this situated case-based reasoning framework is outlined in the next sections,
followed by details of its implementation.

4.1.2 Usage Scenario

Figure 4.1 illustrates the overall usage scenario for the proposed system by an external user.
The way the system is used is outlined.
Figure 4.1 Use case outlining the overall usage of the system

User

Casebase

Database

HolisticModel

Calculate Component
Life

 23

The user of the system supplies the following information (items in parenthesis indicate their
possible values):

• Location of Site (coordinates pair on longitude and latitude in decimal degrees)
• Type of Component (roof / gutter)
• Material of Component (galvanized steel / zincalume / Colorbond)
• Maintenance State (maintained / not maintained)
• Cleaning Condition (dirt can collect / dirt cannot collect)
• Cleaning State (cleaned / not cleaned)
• Location of Component within Building (list of locations)
• Condition of Geographic Location (marine application / non marine application)

The list of locations consists of:

• Open Rooftop
• Open Wall
• Sheltered Wall
• Edges and External Corners of Walls or Roofs
• Dirt Accumulation Zone
• Roof Cavity
• Wall Cavity
• Moisture Accumulation Points in Wall Cavities
• Underfloor Cavity
• Underfloor Positions in Contact with Earth
• Semi-Enclosed Space
• Enclosed Room

Based on the input supplied, the situated CBR system computes a predicted component life
value from its Casebase, Database and HolisticModel. The Casebase is a repository of previous
prediction episodes and the HolisticModel is a set of procedures that calculate the component
life of building elements. Database is a placeholder that represents different databases that
contain component life information from different sources.

4.1.3 System Scenario

The usage scenario in Figure 4.1 is mapped onto a system scenario illustrated in Figure 4.2.
This (system) scenario outlines the way in which a situated CBR system handles the problem
presented in the use case of Figure 4.1. Table 4.1 provides details to this system scenario.
Figure 4.2 Details of Calculate Component Life use case

User

Casebase

Database

HolisticModel

Interpretation

Construction

Inference Engine

Create New Case

 24

Table 4.1 Details of system scenario
Descriptions This scenario illustrates different processes within the situated CBR system used

to predict component life.

Actors User, Casebase, Databases (delphi and field (maintenance) databases) and
Holistic Model.

Preconditions System initialized with the required data for computing similarity indices.

Scenario Text Activity:

User enters values for the following parameters to start the creation of a new
case:

Location of Site

Type of Component

Material of Component

Maintenance State

Cleaning Condition

Cleaning State

Location of Component within Building

Condition of Geographic Location

Interpretation based on initial parameter values:

The casebase, databases and holistic model are accessed to generate
alternatives (subcases) for finalizing the inputs.

An inference engine is employed to process these alternatives to produce this
finalization.

Construction based on finalized parameter values:

The finalized inputs are used again to generate another set of alternatives from
the casebase, databases and holistic model.

An inference engine is used to combine these alternatives to produce a complete
solution for component life prediction.

The current problem solving episodic is stored as a new case.

Alternative Courses None

Extends None

User Interfaces None

Constraints None

Questions None

Notes Both inference engines for interpretation and construction need not be
implemented but provisions must be made for their incorporation later.

Author Pak-San Liew

Source Document System Specification Report (ver. 1.0)

4.1.4 Context Diagram

To define the scope of the situated CBR system, a context diagram and usage scenario are
employed. Figure 4.3 illustrates the boundaries of the situated CBR system in the form of a
context diagram. . The Database box denotes different physical databases of component life
information obtained by different means. For the current system, two databases: one based
on a Delphi study of experts’ opinions (Delphi database) and one based on field
(maintenance) data (labeled as field (maintenance) database in this project), are considered.

 25

Figure 4.3 Context diagram for the situated CBR system

Database Holistic
Model

Predict
Component

Life

Casebase

Internal Datastore

External System

Process

System Boundary

Dataflow

The development of the system entails the creation of the following:

• interfaces to different database;
• interface to a casebase to store previous problem solving episode;
• a software framework to contain the above and
• different entry points within the framework to allow the incorporation of different

inference engines for interpretation and construction as defined in situated CBR.

4.1.5 Software Environment

The situated CBR system is expected to operate within the Windows XP environment
utilizing Java version 1.4.

4.1.6 System Architecture

The basic goal of this project is to develop a software framework for component life
prediction based on the use of knowledge and past experiences according to the model of
situated CBR (Liew and Maher 2004). The architecture of a situated CBR system is the main
focus. This architecture provides a structure that defines the infrastructure that permits
situated case-based reasoning. What software components are involved and their
interconnections are emphasized here. Development of the internal workings of different
components within the architecture that are dictated by the domain of corrosion engineering
is not within the scope of this project.

To achieve the architectural goal, a prototype system is created to define a framework for
situated CBR within a software system. The architecture of this system:

• provides the infrastructure for reasoning about the current situation according to its
knowledge and experiences during interpretation; and

 26

• provides the infrastructure for reasoning about the ways solutions from casebase, the
holistic model and various database can be combined to produce a complete solution

4.1.6.1 Software Architecture

Figure 4.4 illustrates the overall software architecture of the prototype system. All codes
reside within a single machine and no distributed computations are considered in the design
of the system.

Software wrappers are used to insulate data storage technologies from the situated CBR
system. A wrapper encapsulates the details of an underlying persistence technology through
an interface. This interface provides a set of common access methods to the required data
across different persistence technologies. Components of the situated CBR system that
require data storage and retrieval functionalities are only required to conform to the method
signatures of the relevant interface without being concerned about the technology used.
When the technology is changed in subsequent development of the system, changes to the
situated CBR system are isolated to the backend of the wrapper that interacts directly with
the new technology. Codes within the situated CBR that utilizes the wrapper are not affected.

Figure 4.4 Software architecture of the situated CBR system

Software Wrapper

Casebase
(Experience)

Software Wrapper

Holistic Model
(Knowledge)

Software Wrapper

Database
(Experience)SITUATED CBR SYSTEM

4.1.6.2 Solution Approaches for Interpretation and Memory Construction

Error! Reference source not found. illustrates the key components that will implement the
interpretation and construction of memory for the situated CBR system. During interpretation
(Figure 4.6), the interpreter uses the input values from the user to retrieval alternatives from
the casebase, databases of component life and holistic model to finalize the input values
entered by the user. For the database of experience, two databases are considered
currently: a Delphi database of experts’ opinions and a field (maintenance) database of
measurements. During construction (Figure 4.7), alternatives are retrieved from the
casebase, databases of component life and holistic model in a similar way according to the
finalized input to provide the basis for constructing the solution to the current prediction
problem.

 27

Figure 4.5 Key software components for interpretation and memory construction

SITUATED CBR SYSTEM

SITUATED CBR SYSTEM

Software Wrapper

Casebase
(Experience)

Software Wrapper

Holistic Model
(Knowledge)

Software Wrapper

Database
(Experience)

Interpreter

Finalized User Input

Interpretation
Inference Engine

Construction
Inference Engine

Constructor

User Input

Predicted
Component Life

Problem Solving
Episodic

Figure 4.6 Interpretation cycle

User Input

Casebase

Delphi
Database

Other
Database

Similarity Cases

Similar Data / Computations

alternatives

alternatives

alternatives

alternatives

(subcases)

(subcases)

Final User Input

Holistic
Model

Inference Engine

domain heuristics

domain heuristics

Figure 4.7 Construction cycle y

Final User Input

Casebase

Delphi
Database

Other
Database

Similar Cases

Similar Data / Computations

Initial User Input

New Case

Date

Holistic
Model

Prediction

Inference Module
alternatives

(subcases)

alternatives

alternatives

alternatives

Inference Engine

domain heuristics

domain heuristics

(subcases)

 28

4.1.6.2.1 Contents of a Case

The end result of using the system is a new case. This case is made up of the following:

• initial user input;
• finalized user input;
• alternatives (subcases) used in construction consisting of: similar cases from the

casebase, similar data from the Delphi and field databases, as well as similar
computations from the holistic model;

• prediction component life;
• time stamp; and
• an inference module indicating how the prediction value is computed.

Information from interpretation is not stored.

4.1.6.2.2 Generation of Alternatives with Cases from the Casebase

In terms of information from the casebase, associated cases of previous prediction episodes
are retrieved so that previous problem solving experience can be utilized. A retrieved case is
defined as similar to the current situation when its similarity index is computed to be >0.5.
This value is set arbitrarily for the current development and can be fine-tuned later.

For the Queensland schools gutter application the similarity parameters have been defined.
In situations where the cleaning condition of the user input and the retrieved case are different
(one with gunk can collect and the other with gunk cannot collect), the cleaning factor (Cs) is set
to zero so that the retrieved case will not be used.

In situations where the conditions of geographic-location condition of the user input and the
retrieved case are different (one with marine application and the other with non marine
application, the geographic-location factor, Gs, is set to zero so that the retrieved case will not
be used.

For the geographic-location factor, Gs, with non marine application condition, if the location that
was entered by the user and the retrieved case are within 20 km of each other, Gs is set to
the value of 1.0. If the two locations are between 20 to 50km, Gs is set to 0.9. Any distance
greater than 50km sets Gs to 0.0.

4.1.6.2.3 Generation of Alternatives with Data from Databases

Experiences in terms of datum from the databases (Delphi and field) that are retrieved are
based on the use of retrieval key values as entered by the user and alternative values that
certain keys can take. For example, if the user entered a value of Galvanized Steel in the
material field of the user input, this value for material is used as part of a series of keys to
retrieve component life data from the Delphi and field (maintenance) databases. To retrieve
alternative component life, the system changes the material field to Zincalume (while
maintaining the same values for other fields) to retrieve more data from these databases.

 29

Currently, only the material field of the user input is allowed to change and the system cycles
through all material in the databases to generate alternatives. Expansions in terms of
additional materials can be added to the wrappers of the individual data source.

4.1.6.2.4 Generation of Alternatives with Data from the Holistic Model

Alternatives from the holistic model are generated in a way similar to that for databases: all
available materials are used as alternative input to generate different component life data.

4.1.6.2.5 Interpretation from Alternatives

The interpretation process is instantiated as a finalization of input parameter values from the
alternatives generated from above. These alternatives are modelled within the system as
subcases that provide optional values for variable input parameters.

In the current development, the use of different materials to retrieve data provides the user
with alternatives in terms of using different materials for the same situation. These
alternatives provide the basis for reframing the problem specification by modifying the initial
input values entered by the user to finalize the input values.

An inference engine is employed for the finalization process. The intelligence for this process
is currently implemented by displaying the alternatives and prompting the user for a solution.

4.1.6.2.6 Memory Construction from Alternatives

Based on the finalized input data, alternatives for memory construction are generated from
the casebase, databases and holistic model in the same way as in interpretation. Another
inference engine is employed to combine these results and construct a complete solution for
predicting component life.

As in the case of interpretation, the inference engine is not implemented in the current
system but an entry point within the system’s architecture has been provided. The
intelligence for construction is currently implemented by displaying the alternatives and
prompting the user for a solution.

4.1.6.2.7 Hard-Coding of Interpretation and Construction

To emulate the operations of the inference engines employed during interpretation and
construction, dummy functions are used as placeholders for function calls to these engines.
During interpretation, the alternatives from the casebase, databases and holistic models are
displayed as subcases and the initial input values are duplicated to create the finalized
values. During memory construction, the alternatives from the casebase, databases and
holistic models (based on the hard-coded input values from interpretation) are also displayed
as subcases and the final prediction value is set to 100.0. The module parameter that indicates
how the reasoning was done is set to a value PLACEHOLDER.

 30

4.1.6.3 Solution Approach for Calculating Similarity Index

Comparison of the current case with information (experience) stored in the various
databases is integral to the case-based reasoning program. Therefore a method must be
found for quantifying the similarity index of different cases.

Information for the computation of similarity matrix (See Section 3.3) is encoded within an
ASCII file (Figure 4.8). During initialisation, this file is read into the system to allow similarity
indices to be calculated.

The use of an ASCII file to represent the tabulated data in the similarity tables is to allow the
easy modification of their values in the future.

4.1.6.4 Rationale for Design Decisions

Design decisions that have consequence on the behaviours of the system are outlined in the
following table (Table 4.2).

Table 4.2 Design decisions and their rationale

Design Decision Rationale
If there is no data available within a database
based on: (a) the set of original input parameter
values or (b) a modified version of these values
for generating alternatives during interpretation
and construction, the alternative generated will
have a computed value of zero to indicate this
situation.

The user is informed about the fact the database do not
have data for the original or modified set of input
values.

4.1.6.5 Extension and Modifications Points

The following components of the situated CBR system are modification and entry points for
extending the functionalities of the system:

• wrapper for casebase, database and holistic model;
• interpreter access to an inference engine;
• constructor access to an inference engine;
• system access to different tabulated data for similarity computation; and
• system access to different information for similarity computation.

The wrapper for casebase and database permits system modifications and extensions in
terms of:

• using alternative persistence technologies such as a flat file system, rational or object
databases for data storage and retrieval; and

• incorporating new mechanisms for generating alternatives during interpretation and
construction.

 31

Figure 4.8 ASCII file coding of the data required for computing similarity index

PARAMETER_START
Name = maintenance state
Condition = NULL
 Variable = maintained
 Variable = not maintained
 Table

1.0 0.7
0.7 1.0

PARAMETER_END

PARAMETER_START
Name = cleaning
 Condition = gunk cannot collect
 Variable = cleaned
 Variable = not cleaned
 Table

1.0 0.9
0.9 1.0

PARAMETER_END

PARAMETER_START
Name = cleaning
Condition = gunk can collect

Variable = cleaned
 Variable = not cleaned
 Table

1.0 0.7
0.7 1.0

PARAMETER_END

PARAMETER_START
Name = location in building
Condition = NULL
 Variable = open rooftop
 Variable = open wall
 Variable = sheltered wall
 Variable = edges and external corners of walls or roofs
 Variable = dirt accumulation zone
 Variable = roof cavity
 Variable = wall cavity
 Variable = moisture accumulation points in wall cavities
 Variable = underfloor cavity
 Variable = underfloor positions in contact with earth
 Variable = semi enclosed space
 Variable = enclosed room
 Table

1.0 0.8 0.7 0.7 0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.5
0.8 1.0 0.8 0.7 0.6 0.5 0.5 0.6 0.6 0.7 0.7 0.5
0.7 0.8 1.0 0.8 0.6 0.5 0.5 0.6 0.6 0.7 0.8 0.5
0.7 0.7 0.8 1.0 0.7 0.5 0.5 0.6 0.6 0.7 0.8 0.5
0.7 0.6 0.6 0.7 1.0 0.5 0.5 0.6 0.6 0.8 0.7 0.5

 32

0.5 0.5 0.5 0.5 0.5 1.0 0.9 0.8 0.7 0.5 0.5 0.8
0.5 0.5 0.5 0.5 0.5 0.9 1.0 0.9 0.8 0.6 0.6 0.7
0.6 0.6 0.6 0.6 0.6 0.8 0.9 1.0 0.9 0.7 0.7 0.6
0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.9 1.0 0.8 0.8 0.5
0.7 0.7 0.7 0.7 0.8 0.5 0.6 0.7 0.8 1.0 0.7 0.5
0.7 0.7 0.8 0.8 0.7 0.5 0.6 0.7 0.8 0.7 1.0 0.6
0.5 0.5 0.5 0.5 0.5 0.8 0.7 0.6 0.5 0.5 0.6 1.0

PARAMETER_END

PARAMETER_START
Name = time of wetness
Condition = marine application

Variable = 0 to 19
 Variable = 20 to 39
 Variable = 40 to 59
 Variable = 60 to 79
 Variable = 80 to 100

Table
1.0 0.8 0.7 0.6 0.5
0.8 1.0 0.8 0.7 0.6
0.7 0.8 1.0 0.8 0.7
0.6 0.7 0.8 1.0 0.8
0.5 0.6 0.7 0.8 1.0

PARAMETER_END

PARAMETER_START
Name = salinity factor
Condition = marine application
 Variable = 0 to 4
 Variable = 5 to 15
 Variable = 16 to 40
 Variable = 41 to 100
 Variable = 101 to 300
 Variable = 300 to infinity
 Table

1.0 0.8 0.7 0.6 0.5 0.4
0.8 1.0 0.8 0.7 0.6 0.5
0.7 0.8 1.0 0.8 0.7 0.6
0.6 0.7 0.8 1.0 0.8 0.7
0.5 0.6 0.7 0.8 1.0 0.8
0.4 0.5 0.6 0.7 0.8 1.0

PARAMETER_END

(Figure 4.8 cont.)

Expansions in terms of new mechanisms for generating alternatives include the addition of
new parameter values for variable retrieval keys (such as more material types) and the
incorporation of new variable retrieval keys (such as allowing component type to change on
top of material).

The wrapper for the holistic model permits system modifications and extensions in terms of:

• using updated versions of the holistic model; and

 33

• incorporating new mechanisms for generating alternatives during interpretation and
construction (as in the case of casebase and databases).

Inference engines based on Artificial Intelligence (AI) technologies that model the required
domain heuristics during interpretation and construction are accessed through the interpreter
and constructor respectively. Currently, dummy function calls are used to emulate these
accesses.

The information required for computing similarity is encapsulated within a component that
reads off the required data from an ASCII file. For the current ASCII file, only modifications of
different tabulated values within the file are permitted. For all other structural changes, new
mechanisms for getting the required data need to be coded. The interface provided by the
current design isolates these changes to the underlying codes that deal directly with the data.
Other components of the situated CBR system that needs the information for similarity
computation are not altered with these changes.

4.1.6.5 Secondary Issues

The following are taken as secondary issues during the development of the system:

• user interfaces
• extensive error handling; and
• performance and efficiency.

The structure of the software framework was seen as the main focus of the project, and
simple user interfaces were developed later to facilitate the development of the applications.
No provisions are also made for handling errors, performance and efficiency issues for the
same reason.

4.1.7 Software Modules

The situated CBR system is decomposed into the following:

• user input module;
• display module;
• interpretation module;
• construction module;
• inference module
• similarity computation module;
• data source module and
• wrappers for data source.

Figure 4.9 presents the overall picture of how these modules relate to each other as part of
the whole system. The responsibility of each module is outlined in Table 4.3.

 34

Figure 4.9 Relationships between different modules of the situated CBR system

User Input Module

Display Module

Interpretation Module

Construction Module

Similarity Computation
Module

Wrapper

initial user input

Data Source

Inference Module

alternatives

alternatives

alternatives

final user input

alternatives
cues

cues

keys

user input

keys

data

data
data

data

Table 4.3 Software modules in the situated CBR system

Module Responsibility
User Input To represent the set of user input parameters.
Display To display the output of different processes.
Interpretation To provide the required interpretative function for situated CBR.
Construction To provide the required constructive function for situated CBR.
Inference To represent domain heuristics for finalizing user input and constructing a

solution from a series of alternatives.
To provide an entry point for incorporating different AI engines for
inferencing.

Similarity Computation To calculate the similarity between the input parameters and previous
problem solving episodes.
To provide an interface to different ways to calculate similarity indices so
that changes are isolated when different methods are used.

Data Source Module To provide the required data for interpretation and construction of
solutions.

Wrappers for Data Source To provide an interface to various data sources so that changes are
isolated when persistence technologies changes.
To an entry point for incorporating different mechanisms that allow
alternatives to be retrieved from the data sources based on variable keys.

4.2 Implementation

4.2.1 Class Diagram

Figure 4.10 outlines the key classes of the situated CBR system. Details of the classes are
described in Appendix IV.

 35

Figure 4.10 Key classes in the implementation of the situated CBR system.

ComponentLifeHolisticModel

ComponentLifeInterpreter
ComponentLifeDelphiDatabase

ComponentLifeFieldDatabase

ComponentLifeCase

+ id
+ module
+ value

ComponentLifeUserInput

ComponentLifeTableInput

ComponentLifeSubCase

ComponentLifeFieldSubCase

ComponentLifeDelphiSubCase

ComponentLifeHolisticSubCase

ComponentLifeConstructor

ComponentLifeCaseBase

ComponentLifeGeoLocation

ComponentLifeSituatedCBR

ComponentLifeDataSource

Date

ComponentLifeConsoleDisplay

- alternatives

*

- alternatives

*

- alternatives

*

- alternatives

*

- siteLocation

- similarityTable

- finalInputData

- initialInputData

- timeStamp

4.2.2 Interactions

Interactions between different classes for a typical memory construction through interaction
and construction are illustrated in Figure 4.11.

4.2.3 Extension and Modification Points

The case-based reasoning engine has been coded to allow for subsequent extension and
modification. Table 4.4 details the various modification points with the relevant classes for
future system changes.

 36

Figure 4.11 Interactions between classes of the situated CBR system for a typical memory construction process

constructor : ComponentLife
Constructor

dis : ComponentLifeConsoleDisplayinterpreter : ComponentLife
Interpreter

theCase : ComponentLifeCasetimeStamp : DateuserInput : ComponentLifeUser
Input

fdb : ComponentLifeFieldDatabasedsurvey : ComponentLifeDelphi
Database

hmodel : ComponentLifeHolistic
Model

theCasebase : ComponentLifeCase
Base

tableInput : ComponentLifeTable
Input

dataSources : Vector : ComponentLifeSituatedCBR

2 : \new\

1 : \new ("userInputCFG.txt")\

3 : \init\

4 : \init\

5 : \init\

6 : \init\

7 : \add(hmodel, dsurvey,fdb)\

8 : \new\

9 : \new\

10 : \new\

11 : \setInitialInputData\

12 : \new\

13 : \getFinalUserInput\

22 : \setFinalUserInput\

14 : \getAlternatives\

15 : \getAlternatives\

16 : \getAlternatives\

17 : \getAlternatives\

18 : \getAlternatives\

19 : \activateInferenceEngine\

20 : \displayAlternatives\

21 : \getConsoleDisplayString\

23 : \new\

24 : \constructCase\
25 : \getAlternatives\

26 : \getAlternatives\

27 : \getAlternatives\

28 : \getAlternatives\

29 : \getAlternatives\

30 : \activateInferenceEngine\

31 : \displayAlternatives\

32 : \getConsoleDisplayString\

33 : \addCase(theCase)\

 37

Table 4.4 Extension and modifications points within source codes

Extension / Modification Related Class.Methods / File Remarks
Adding new materials to generate more alternatives
from the Holistic model.

ComponentLifeHolisticModel()

Add the string representations of these material to the field
ComponentLifeHolisticModel.materials

Adding new ways to generate alternatives from the
Holistic model.

ComponentLifeHolisticModel()
ComponentLifeHolisticModel.getAlternatives(…)

In addition to the ways alternatives are generated by cycling
through different materials, additional codes needs to be
added to ComponentLifeHolisticModel.getAlternatives(…).

Adding new materials to generate more alternatives
from the delphi database.

ComponentLifeDelphiDatabase ()

Add the string representations of these material to the field
ComponentLifeDelphiDatabase.materials

Adding new ways to generate alternatives from the
delphi database.

ComponentLifeDelphiDatabase ()
ComponentLifeDelphiDatabase.getAlternatives(…)

In addition to the ways alternatives are generated by cycling
through different materials, additional codes needs to be
added to ComponentLifeDelphiDatabase.getAlternatives(…).

Adding new materials to generate more alternatives
from the field (maintenance) database.

ComponentLifeDelphiDatabase ()

Add the string representations of these material to the field
ComponentLifeFieldDatabase.materials

Adding new ways to generate alternatives from the
field (maintenance) database.

ComponentLifeFieldDatabase ()
ComponentLifeFieldDatabase.getAlternatives(…)

In addition to the ways alternatives are generated by cycling
through different materials, additional codes needs to be
added to ComponentLifeFieldDatabase.getAlternatives(…).

Adding inference engine for interpretation ComponentLifeInterpreter.activateInferenceEngine(…) Call out to the inference engine from the body of this function.
Adding inference engine for construction ComponentLifeConstructor.activateInferenceEngine(…) Call out to the inference engine from the body of this function.

Modifying tabulated data for similarity index
computation

userInputCFG.txt Change the value of the data under the “Table” heading of the
required parameter.

Different ways to compute similarity index ComponentLifeTableInput The entire class and all related classes need to be changed.
Using different persistence technologies ComponentLifeHolisticModel

ComponentLifeCaseBase
ComponentLifeDelphiDatabase
ComponentLifeFieldDatabase

Change all the codes within the bodies of all methods within
the wrapper class but maintain their signatures.

 38

4.3 System Testing

The situated CBR framework developed in this project was tested through a series of
operation scenarios for the required behaviours as dictated by the specification of the
system. It should be noted that the structure of the system is the main focus of this
development. The values of the component life calculated in the testing phase of the
project do not make any realistic sense.

4.3.1 Implementation Particularities

Initial implementation of the CBR engine had the following points:

• The casebase is implemented by using Java’s serialisation mechanisms. All
cases are stored in the file: casebase.bin.

• User input is “hard-wired” through a series of codes. Variations in input
parameters involve changing the values within the source codes.

• All cases have a fixed computed value of 100.0. This value is “hard-coded” to
emulate a result obtained by applying some of the domain heuristics during
memory construction. Currently this heuristic is not implemented.

• The values calculated from the system are NOT to be taken as valid as all
data used are created artificially to test different paths of the program
execution.

• The values obtained from the holistic model, Delphi database, field
(maintenance) data are not valid in terms of their reflection of real-life
scenarios. Artificial values are created in these systems to populate their
contents.

Modifications to allow user input and extraction of real data from the case base and
database were subsequently made.

4.3.2 Documentation Scope

Only notes that are relevant to system are listed here, documentation related to unit
testing of individual components of the system is not presented. Appendix V outlines
a sample of unit testing code for the component ComponentLifeTableInput contained
within its main() function. Subsequent developers of the system can run these codes
by un-commenting the relevant parts to verify the correct behaviours of the
component under consideration.

4.3.3 Output Formatting

An output from a single run of the system is grouped by using the “tab” character.
Text strings that relate to the same concept (such as the parameter names and their
respective values that describe the user input) are indented from the left margin to

 39

align vertically. Output codes that are colour-coded correspond to colour-coded text
found in the test descriptions listed.

4.3.4 Test Scenarios

A series of test scenarios were conducted to test the behaviour of the system through
different execution paths. The key behaviours to be tested and their respective test
scenarios are listed in Table 4.5.

Table 4.5 Test scenarios and the key behaviours tested

Behaviour to be Tested Test Scenario
Initial population of casebase Test Scenario 0: Initialization of Casebase
Retrieval of alternatives from the holistic model,
delphi database and field (maintenance)
database

Test Scenario 0: Initialization of Casebase

Creation of case Test Scenario 1: Retrieval from Casebase I
Test Scenario 2: Retrieval from Casebase II

Saving of case Test Scenario 1: Retrieval from Casebase I
Test Scenario 2: Retrieval from Casebase II

Retrieval of alternatives from the casebase,
holistic model, delphi database and field
(maintenance) database

Test Scenario 1: Retrieval from Casebase I
Test Scenario 2: Retrieval from Casebase II

Variation in maintenance factor Test Scenario 3: Retrieval from Casebase III
Variation in maintenance and cleaning factor Test Scenario 4: Retrieval from Casebase IV
Variation in geographic-location, maintenance
and cleaning factor

Test Scenario 5: Retrieval from Casebase V

Variation in geographic-location, maintenance
and cleaning factor

Test Scenario 6: Retrieval from Casebase VI

Variation in location-in-building factor Test Scenario 7: Retrieval from Casebase VII
Variation in geographic-location Test Scenario 8: Retrieval from Casebase VIII

Test Scenarios 0,1,and 2 must be run consecutively. Test Scenarios 3, 4, 5, and 6
can be run independently. A series of sample runs were conducted with the holistic
model, Delphi and field (maintenance) databases. The results from these runs
provide the basis for setting the various parameter values in this testing. Further
information on testing of the CBR can be found in the Software Testing Report.

4.3.4.1 Computation of Similarity

A key component for producing the required behaviours for the situated CBR system
is the computation of the similarity matrix between the sets of user input parameters
and the cases contained within the casebase. Figure 4.12 illustrates the key
execution paths (as arrows) through different factors and conditions that determine
the final similarity index.

 40

Figure 4.12 Key execution paths for computing the similarity matrix

Maintenance Factor

Cleaning Factor

Location-in-Building Factor

Geographic-Location Factor

Condition: Gunk Can Collect

Condition: Gunk Cannot Collect

Condition: Marine Application

Condition: Non-Marine Application

Distance < 20 km

20 km < Distance < 50 km

Table Lookup

Similarity Index

Figure 4.13 Execution paths of different test scenarios

M a in te n a n c e
F t

C le a n in g
F t

L o c a t io- in - B u i ld in g
F t

G e o g r a p h
i

- L o c a t io n
F t

C o n d i t io n : G u n k C a n
C o l le c t

C o n d i t ioG u n k C a n n o t
C o l le c t

C o n d i t ioM a r in e
A p p l ic a t io n

C o n d i t io n :
N

-M a r in e
A p p l ic a t i o n

D is t a n c e <

2 0 k m < D is t a n c e

T a b le
L o o k p

S im i la r i t y
In d e x

T E S T S C E N A R I O 3

M a in te n a n c e
F t

C le a n in g
F t

L o c a t io- in - B u i ld in g
F t

G e o g r a p h
i

- L o c a t io n
F t

C o n d i t io n : G u n k C a n
C o l le c t

C o n d i t ioG u n k C a n n o t
C o l le c t

C o n d i t ioM a r in e
A p p l ic a t io n

C o n d i t io n :
N

-M a r in e
A p p l ic a t i o n

D is t a n c e <

2 0 k m < D is t a n c e

T a b le
L k

S im i la r i t y
In d e x

T E S T S C E N A R I O 4

M a in te n a n c e
F t

C le a n in g
F t

L o c a t io- in - B u i ld in g
F t

G e o g r a p h
i

- L o c a t io n
F t

C o n d i t io n : G u n k C a n
C o l le c t

C o n d i t ioG u n k C a n n o t
C o l le c t

C o n d i t ioM a r in e
A p p l ic a t io n

C o n d i t io n :
N

-M a r in e
A p p l ic a t i o n

D is t a n c e <

2 0 k m < D is t a n c e

T a b le
L k

S im i la r i t y
In d e x

T E S T S C E N A R I O 5

M a in te n a n c e
F t

C le a n in g
F t

L o c a t io-in-B u i ld in g
F t

G e o g r a p h
i

-L o c a t io n
F t

C o n d i t io n : G u n k C a n
C o ll e c t

C o n d i t ioG u n k C a n n o t
C o l le c t

C o n d i t ioM a r in e
A p p l ic a t i o n

C o n d i t io n :
N

- M a r in e
A p p li c a t io n

D is ta n c e <

2 0 k m < D is ta n c e

T a b le
L o o k p

S im i la r i t y
In d e x

T E S T S C E N A R IO 6

M a in te n a n c e
F t

C le a n in g
F t

L o c a t io-in-B u i ld in g
F t

G e o g r a p h
i

-L o c a t io n
F t

C o n d i t io n : G u n k C a n
C o ll e c t

C o n d i t ioG u n k C a n n o t
C o l le c t

C o n d i t ioM a r in e
A p p l ic a t i o n

C o n d i t io n :
N

- M a r in e
A p p li c a t io n

D is ta n c e <

2 0 k m < D is ta n c e

T a b le
L k

S im i la r i t y
In d e x

T E S T S C E N A R IO 7

M a in te n a n c e
F t

C le a n in g
F t

L o c a t io-in-B u i ld in g
F t

G e o g r a p h
i

-L o c a t io n
F t

C o n d i t io n : G u n k C a n
C o ll e c t

C o n d i t ioG u n k C a n n o t
C o l le c t

C o n d i t ioM a r in e
A p p l ic a t i o n

C o n d i t io n :
N

- M a r in e
A p p li c a t io n

D is ta n c e <

2 0 k m < D is ta n c e

T a b le
L k

S im i la r i t y
In d e x

T E S T S C E N A R IO 8

 41

5. QDPW APPLICATION

Lifetime prediction for gutters in Queensland was chosen as an area of concern by
the industry partner Queensland Department of Public Works. This would assist in
material choice and maintenance scheduling. The general CBR designed for
building components was relevant for this, but with some modifications. In particular
the holistic model needed modifications to some of its modules (See Figure 3.5) to
make it applicable for gutters and the range of materials found for gutters. Those
included in the program were:

• Galvanised steel

• Zincalume, and

• Colorbond®.

Also the output from the model for metals is a mass loss per year and this needs to
be correlated with a predicted life. Consideration also needed to be given to what
constitutes the “lifespan” of a product with several criteria for failure being assessed.

5.1 Case Definition for Gutters

Gutters were broken up into different elements or cases as it was considered that the
different elements would experience variations in local climate and as such were
likely to degrade at different rates. These are shown in Figure 5.1.

Figure 5.1 Representation of the three gutter elements

The bottom of the gutter is the area that will be most affected by an accumulation of
dirt and debris, with the internal edges and sides less so. The exterior of the gutter is
considered to be ‘sheltered’ and is not an area where dirt can accumulate. However
as a sheltered location it will not be washed by rain and thus marine salt deposited by
wind can accumulate.

5.2 Holistic Model Modifications

The holistic model is used to predict the rate of corrosion of metals around Australia.
At a particular location the prevailing climatic conditions (of primary importance are
the airborne salinity and Time of Wetness -TOW) are used to calculate a mass loss
per year. Materials include zinc and steel.

Blue – open internal edges

Red – open internal bottom

Green – sheltered exterior
Gutter

 42

Because gutters are a building component that is classified as a possible dirt
accumulation zone, it was considered necessary to formulate new rules for TOW
(following wetting events such as rainfall) to be incorporated into the model. Clean,
freely-flowing gutters will dry out at a different rate from gutters that have
accumulated an amount of leaves and dirt and these rates needed to be determined.

The model also no facility for handling the material of particular relevance to gutters
ie Colorbond®. Thus rules for the degradation of Colorbond® had to be devised.

5.2.1 TOW Analysis for Gutters

An experiment was undertaken to determine the time a gutter takes to dry after a
significant wetting event such as rainfall. Data was needed from both a clean gutter
and one which has a build up of dirt and leaf matter. The data collected from this
experiment is used for modifying the holistic model as part of the CBR tool. The full
experimental details are reported in Report No 2002-059-B No 11. Instrumentation
of Roof Gutter to Determine Time of Wetness.

5.2.1.1 Gutter Location

A gutter was selected on site at CMIT, Highett. (Highett is a suburb of Melbourne in
Victoria (Figure 5.2

Figure 5.2. It is approximately 3 Km from Port Phillip Bay and has a salt deposition of
approximately 8 mg/m²•day and a corrosion rate for steel of approximately
10µm/year.)

Figure 5.2 Location of Highett, a suburb of Melbourne

 43

The CSIRO site at Highett also has an exposure station which is well characterised in
terms of weather, corrosion and salt deposition. The exposure station is at the north
end of the site and the building used is approximately 50m to the east of the Weather
station.

The building used for instrumentation of the gutter (shown in Figure 5.3) has an
asbestos roof and a galvanised gutter. The gutter has both clean sections and
sections that have a significant build up of leaf litter and dirt. The gutter has red rust
in the sections that are dirty and some coating loss from the clean sections. The
gutter runs in a north south direction and the roof and gutter do not have any trees
directly overhead.

Figure 5.3 View of building used for instrumentation of the gutter

5.2.1.2 Location of Sensors in Gutter

 44

Figure 5.4, shows the inside of the gutter from the south. It can be seen that the
southern end has significant build up of leaf litter and dirt. The dirt and leaf litter is
approximately 10mm deep.
Figure 5.4 View of the inside of the gutter

In the clean section of gutter a wetness sensor and surface temperature sensor were
mounted, while in the dirty section only a wetness sensor was installed. Figure 5.5
(a) shows the clean section of gutter and the sensors attached to the bottom with
thermally conductive tape. The clean section has some surface dirt but is generally
clean.
Figure 5.5 Placement of sensors in (a) clean and (b) dirty section of gutter

(a) (b)

Sensor attached here

 45

Figure 5.5 (b) shows the dirty section and the location of the wetness sensor. The dirt
and leaf litter was carefully lifted and the bottom of the gutter cleaned, before the
sensor was stuck to the bottom of the gutter and the leaf litter and dirt replaced.

5.2.1.3 Data Collected

Data was collected from the gutter for the period from the 9th of February to the 29th
of March 2005, at 15 minute intervals. This data from the gutter was combined with
data from the Weather Station. Figure 5.6 shows a small section of the data
collected.

The graph shows that a wetness event, rain, occurred on the morning of the 15th of
February and that both the clean and dirty sections of the gutter became wet. The lag
between the clean and the dirty wetness sensor is because the dirt and leaf litter in
the dirty section of the gutter need to wet before the gutter and sensor become wet.
For these experiments, the start of the drying period is timed from when the weather
station wetness sensor starts to dry. The drying period is considered ended when the
gutter wetness sensor has returned to zero.

 46

Table 5.1 details drying times for the gutter from the data collected. For the graph in
Figure 5.6 the drying time for the clean gutter was only 1½ hours while the dirty
gutter took over 73 hours.
Figure 5.6 Graph of data from 15 - 19 February 2005

15-Feb-05 16-Feb-05 17-Feb-05 18-Feb-05 19-Feb-05

0

500

1000
G

lo
ba

l R
ad

ia
tio

n
(W

/m
²)

0

10

20

30

W
et

ne
ss

 (µ
S)

R
ai

nf
al

l(m
m

x1
0)

0

50

100

Te
m

pe
ra

tu
re

 (°
C

) &
 R

H
 (%

)

0

50

100

G
ut

te
r W

et
ne

ss
(0

 d
ry

, 1
00

 W
et

)

Rainfall

Wetness

RH Gutter
Temp

Air Temp.

Clean

Dirty

Starting point for drying
time

 47

Table 5.1 Drying times for the gutter after significant wetting events
Dirty Gutter

Time of Wetness event Time of Dry Gutter Time (hours: minutes)

12/02/2005 05:15 14/02/2005 11:15 54:00

15/02/2005 09:00 18/02/2005 10:45 73:45

08/03/2005 08:00 09/03/2005 19:30 35:30

11/03/2005 08:00 13/03/2005 06:00 46:00

 Average 52:20

Time of Wetness event Time of Dry Gutter Time (hours: minutes)

12/02/2005 05:15 12/02/2005 08:40 3:30

15/02/2005 09:00 15/02/2005 10:20 1:30

02/03/2005 06:45 02/03/2005 08:45 2:00

06/03/2005 07:15 06/03/2005 09:00 1:45

08/03/2005 08:00 08/03/2005 10:15 2:15

10/03/2005 08:00 10/03/2005 10:45 2:45

 Average 2:15

Drying times were only calculated after significant wetness events occurred, ie. either
rain or when the wetness sensors, both gutter and air, reached their maximum value.
The times calculated here have been used in the holistic model as indicative of the
drying times of clean and dirty gutters. However some variation will occur due to a
whole range of circumstances eg. variation in relative humidity and temperature
(measurements were taken in Melbourne late summer), and the extent of sheltering
of the gutter.

Table 5.2 shows a summary of variables typically used for corrosion studies. TOW is
the time of wetness expressed as a percentage of time, the ISO TOW is when the
relative humidity is greater than 80% and temperature is greater than 0°C according
to ISO 9223. The Gutter TOWs are based on the wetness sensors and the Air TOW
is the wetness sensor on the weather station.

Table 5.2 Summary data
Variable Value Units

ISO TOW 22.8 % of time

Gutter TOW Clean 54.0 % of time

Gutter TOW Dirty 37.2 % of time

Air TOW 14.9 % of time

Average Air Temp 18.0 °C

Average Gutter Temp 20.8 °C

Average Air RH 65.9 %

 48

It is interesting to note that the clean gutter has a longer TOW overall (54%) than the
dirty section (37%). This is because the clean section is wet nearly every night due to
condensation events while the dirt and leaf litter in the dirty section absorb a certain
amount of water before the gutter or sensor get wet.

5.2.2 Theoretical Analysis of Gutter Drying

5.2.2.1 Evaporation from the gutters.

A theoretical analysis of gutter drying was carried out with the key points highlighted
below.

As a rough guide, water 2.5 mm deep evaporates in about 1 hr at 50% relative
humidity in moving air (nominally 2 m/s along the gutter). The nominal 2 m/s is
estimated from a wind averaging about 5 m/s at eaves height; results are not very
sensitive to the actual wind velocity unless the nominal velocity is less than 0.5 m/s.

For a new gutter with correct slope the water left after rain is of the order of 0.2 mm
thick and evaporates at 75% relative humidity (2 m/s air) in about 10 minutes.

For an old gutter that has sagged and filled part way up with gunk the equivalent
water depth may be 2 cm thick and require 16 hours to evaporate at 75% relative
humidity (2 m/s air).

Evaporation of water trapped in a 2.5 cm thick layer of gunk is expected to proceed
at about the same rate as a 2.5 cm thick layer of water. The initial evaporation rate is
the same, and as it dries up ‘wicking’ action of the gunk brings water up from below
to keep the top wet where evaporation is taking place.

5.2.2.2 Statistical effects on evaporation.

Both relative humidity and wind speed are statistical effects. Statistically rare events
can have a significant overall effect. In about 7% of cases the wind speed is very low
or the relative humidity is very high. In those cases the evaporation time is longer by
about a factor of 13, giving 8 ½ days for a gunk filled gutter.

5.2.3 Colorbond® Degradation Model

Essentially, there are six gutter types in Australia:

1. Galvanised steel

2. Painted galvanised steel

3. Zincalume coated steel

 49

4. Painted zincalume coated steel

5. Colorbond® with one-sided topcoat

6. Colorbond® with two-sided topcoat

Modeling the degradation of these six gutter types is approached as follows.

1. Galvanised steel. The degradation of galvanised steel products is predicted
directly from the current holistic model for galvanised materials.

2. Painted galvanised steel. Here the application of paints to the gutter is carried out
after installation. Quality control on such paint films is poor and a range of different
paint formulations may be used. The use of corrosion inhibited primers is not a
formality in such systems and lifetime predictions are essentially meaningless.
Depending upon the location of the gutter, any standard paint coating on galvanised
steel will offer limited protection to the gutter over time periods exceeding five years
(Sjöström, 1990).

3. Zincalume coated steel. The degradation of zincalume coated steel products is
predicted directly from the current holistic model for zincalume materials.

4. Painted zincalume coated steel. Modeling is not meaningful. See above for
explanation for 2. painted galvanised steel.

5. Colorbond® with one-sided topcoat. Colorbond® is a product of Bluescope steel
and has been proven to have exceptional performance in most locations across
Australia. Although there are different grades of Colorbond®, the most common
make-up for guttering is steel sheet (low carbon steel) with a coating of zincalume AZ
150 (150 g m-2), which is overcoated on both sides with a 5 µm chromate-containing
epoxy primer. The one-sided product has a 20 µm thick UV-resistant topcoat and a 5
µm grey backing coat covering the primer (Bluescope Steel, 2005). Colorbond®
gutters are assembled so that the backing coat forms the interior of the gutter and the
coloured topcoat forms the outer gutter.

Inspections have found that before Colorbond® is installed the 10 µm backing coat is
riddled with holes, whilst the topcoat shows few defects. An inspection of a length of
Box-type gutter using a holiday tester showed the backing coat to possess
approximately 1000 point defects per square metre. Inspection of ten panels (0.6 m
× 0.6 m) of Colorbond® topcoat with a holiday tester estimated damage to be limited
to approximately 2 point defects per square metre. The number of defects was also
increased at folded edges. Holiday testing of fold lines on the backing coat of the
Box-type gutter showed almost constant breaks in the coating. The folded edges on
the topcoat were not initially damaged.

Most paint films are thought to be best modelled with either a localised mechanism
only or a combination of localised and general mechanisms (Sjöström, 1990).
Colorbond®, which comprises of two organic layers, a thin epoxy primer containing

 50

inhibiting pigments and a poly vinylidene fluoride topcoat has been shown to fail in
localised areas. Inspection of the defects located on unexposed Colorbond®
suggested that they had a diameter in the range of 50 µm. The model presented
here assumes the following:

- Colorbond® is installed using best practice: that fasteners and washers are
selected as per the manufacturers specifications, that materials are not
damaged or exposed to contamination sources, and that neutral-cure silicone
sealants are used for edge protection.

- It is assumed that the Colorbond® topcoat has isolated defects with a 50 µm
diameter. The backing coat is assumed to have 50 µm defects that are
interconnected with other defects, thus giving rise to an increased rate of
chromate leaching from the primer.

- That strontium chromate is leached from the 5 µm thick primer layer and is
able to inhibit corrosion until it is depleted through either washing or
precipitation into a more insoluble form (Furman et al., 2005; Wang et al.,
2004; Scholes et al., 2005; Sinko, 2001; Zin et al., 1998).

- The presence of salts enables moisture to be condensed at relative
humidities below either 35% RH (sea salt) or 75% RH (sodium chloride)
(Muster and Cole, 2005). The presence of salts encourages chromate
leaching to occur at an increased rate (Prozek and Thierry, 2004). The
concentration of salts on the surface and the surface condition (dry, wet) is
calculated using the existing holistic model.

- As soluble chromate levels are depleted corrosion commences on the
zincalume layer (Baghni et al., 2004). Corrosion rates are assumed to be
directly proportional to the concentration of salts on the surface (Davis et al.,
1987).

- The corrosion of zincalume is assumed to occur with an aspect ratio of 50:1.
That is, for every micron in depth of penetration into the coating, the coating is
undercut 50 microns either side of the defect. At total penetration of the 20
µm thick zincalume it is therefore assumed that an area 2 mm in diameter is
being attacked by the environment. The aspect ratio was developed from
cross-sections of Colorbond® materials where damage had occurred.

- Zincalume corrosion within the defect is assumed to occur at a rate similar to
that of an uncoated surface. Therate of zincalume mass loss for a given salt
deposition rate over a one year period is used (King et al., 2001; Ganther and
Cole, 2002).

- Once the depth of corrosion damage reaches 20 µm into the zincalume
corrosion rate is accelerated by the exposure of steel according to relative
steel:zincalume areas available for galvanic corrosion (Bluescope Steel,
2005; Tada et al., 2004).

- Once a steel area of 0.25 cm radius is exposed, the zincalume is assumed
not to galvanically protect the underlying steel any more and steel corrosion
occurs (Tada et al., 2004).

- Mild steel corrosion within the defect is assumed to occur at a rate similar to
that of an uncoated surface. The rate of steel mass loss for a given salt
deposition rate over a one year period is used (King et al., 2001).

 51

6. Colorbond® with two-sided topcoat. Will be dealt with as detailed above for
Colorbond® with topcoat and backing sheet but with two topcoats.

5.2.3.1 Modelling: Equations and interdependencies

Figure 5.7 provides a visual representation of the sequence of steps used to model
Colorbond® degradation.

Figure 5.8 provides a schematic of the interdependencies for the modelling of metal
degradation under an organic coating consisting of primer and topcoat. The presence
of chromate pigments enable corrosion to be limited when in the presence of water
and salts. Once chromate is leached, either directly from the primer or through the
topcoat or backing coat, corrosion of the zincalume is initiated. Chromate leaching is
enhanced by water, salts and UV exposure. Corrosion is accelerated by the
presence of water and salts. In reality, the onset of zincalume corrosion beneath the
paint film is likely to create an increased defect volume and also, in some instances,
expose the defect to fresh reserves of chromate. The current model does not
consider the availability of new reservoirs of chromate.

5.2.3.2 Modelling Chromate depletion

Chromate leaching from an epoxy-polyimide polymer has been shown to yield 200
µg per square centimetre of exposed primer during a 10-day immersion (Scholes et
al., 2005). Chromate is assumed to leach according to Fick’s second law (i.e. t0.5
dependence). There is some conjecture as to whether leaching is likely to be Fickian
(Furman et al., 2005). However, the t 0.5 dependence is likely to provide a reasonable
fit for “universal” primer systems. Work by Zin et al. (1998) and Sinko (2001)
observed a t0.5 dependence.

The leaching rates used for the model are derived from the 10-day immersion data of
Scholes et al. (2005), which is modelled with a t0.5 relationship as shown by the thin
solid line in Figure 3. Additional leaching of primer through the back coat and top
coat of Colorbond® is assumed to follow an identical t0.5 relationship but is assumed
to be limited by an increased barrier to diffusion which is calculated directly from the
thickness of the backing coat and top coat (see dashed lines in Figure 5.9).

 52

Figure 5.7 Model for the degradation of Colorbond® materials. (a) A 50 mm diameter defect in the
organic coating is assumed, (b) chromate is leached from the primer due to the presence of
moisture and salts, (c) upon depletion of chromate inhibitor zincalume is corroded with an
aspect ratio of a/d = 50, (d) where d exceeds the thickness of zincalume, surrounding
zincalume is lost at an increased rate due to galvanic corrosion. Steel corrosion is assumed
to occur when g > 1 cm and zincalume no longer provides sufficient galvanic protection for
the underlying steel.

 53

Figure 5.8 Circular relationships determining metal degradation at a defect in a primer and topcoat.

Figure 5.9 Chromate depletion model. Depletion occurs directly from primer in defect and through

backing coat and to a lesser extent through the topcoat.

Increased [Cl],
RH, UV

Chromate

Store

Increased
corrosion

Increased
defect
volume

Chromate
depletion

Increased Cr
resource

 54

5.2.3.3 Influence of salt concentration on leaching rate

Chromate leaching has also been shown to be a function of chloride concentration
(Prosek and Thierry, 2004). Chloride anions are able to associate with soluble
chromate and encourage dissolution of pigments. Prosek and Thierry (2004) found
that 10 mmol L-1 of NaCl increased chromate leaching by 30%. By increasing the
NaCl concentration to 100 mmol L-1 had minimal additional impact. The amount of
chromate leached during a 3-hour period allowing for the influence of salt
concentration is given as:

0.1544

1()*(1.2123[])Cl t tL L L Cl−= − …Eqn 5.1

5.2.3.4 Influence of photooxidation on leaching rate

Data from Bauer (2000) shows that the relative photooxidation rate can be correlated
to latitude coordinates for the northern hemisphere. Here, it is assumed that the
correlations hold for the southern hemisphere. The data presented in Figure 5.10
allows for time of UV exposure, UV spectrum changes and for the influence of
relative humidity.

Figure 5.10 Dependence of photooxidation rate on latitude. Data from Bauer (2000)

y = -0.0004x2 + 0.0003x + 1.2558
R2 = 0.9916

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60

Latitude

R
el

at
iv

e
ph

ot
oo

xi
da

tio
n

ra
te

 55

Correlation of the relative photooxidation rates with damage to Colorbond® was
achieved by matching the % failure data provided by Bauer (2000) with the failure
ratings of Colorbond® provided by King et al. (2001). Failure of the topcoat and
backing coats will lead to increased loss of chromate from the primer. The total loss
of chromate is given as:

2(1)(0.0004*LAT 0.0003.LAT)total ClL L xt= + − + mol …Eqn 5.2

where x = 0.8 for topcoat and 0.4 for backing coat, t = time in years, LAT = latitude in
degrees.

The amount of chromate remaining in the 25 µm area surrounding the defect is given
as:

Crrem = 1.084 × 10-10 – Ltotal mol …Eqn 5.3

5.2.3.5 Protection by chromate

The amount of protection offered against corrosion by chromate is calculated using a
dependence factor, Crdep, and is obtained from electrochemical data (see Figure
5.11) that defines corrosion rates (currents) as a function of available chromate
concentration [Cr].

[]/ 0.000020.15 1.85

0.15

Cr

dep
eCr
−+

= …Eqn 5.4

Crdep has a maximum value of 2. The available chromate concentration [Cr] is
derived from equation 5 and is a function of the recently chromate released [Ltotal(t)-
Ltotal(t-1)] into the volume of the defect and the fraction of chromium remaining in the
primer surround the defect.

10

[() (1)][]
1.084 10

total total remL t L t CrCr
V −

− −
=

×
 …Eqn 5.5

The volume, V is the volume of the defect plus the 25 µm of the primer surrounding
the defect.

2(50) 5V π= µm = 3.92699 × 10-11 L

 56

Figure 5.11 The influence of chromate concentration on the corrosion current of zincalume at varying

chloride concentration. Shaded area represents the typical concentrations of chromate
during leaching.

 57

5.2.3.6 Zincalume mass loss

The actual corrosion is given by:

(1)ZA ZA depd M Cr= × − …Eqn 5.6

and is maximum when Crdep = 2, which occurs when [Cr] < 5 × 10-5 mol L-1. Under the
set conditions when [Cr] exceeds 2.9 × 10-4 mol L-1 no corrosion occurs. These
values are in affect generated from the experimental data presented in Figure 6.
Values for MZA and MSTEEL are calculated from the work of King et al. (2001), who
quoted the yearly corrosion rates given in Table 5.3.

Table 5.3 Corrosion rate data from King et al. (2001).
Site Rain

days/yr
Estimated time-of-
wetness (% > 75)

Salt
(mg/m2.day)

Zincalume 1yr
(µm/yr)

Mild steel 1 yr
(µm/yr)

Navy
(Flinders)

161 80 63 1.413 30

Waterboard 70 27 0.343 21.8

CSIRO 65 7.8 0.237 11.2

Values of corrosion rates are modified by the estimated time-of-wetness to allow a 3-
hourly corrosion rate to be calculated. Figure 5.12 shows the generation of corrosion
rates as a function of salt deposition allowing for time-of-wetness.
Figure 5.12 Correlations between mass loss and average salt deposition rate for three sites. Data from

King et al. (2001).

y = 0.0000091x + 0.0000013
R2 = 0.9295020

y = 0.00336Ln(x) - 0.00083
R2 = 0.98935

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 20 40 60 80

Salt deposition (mg.m-2.day-1)

M
as

s
lo

ss
 (m

ic
ro

n
pe

r 3
hr

 p
er

io
d

)

 58

Once the zincalume mass loss reaches 20 µm the underlying steel is exposed. At
this point the exposed steel is able to fill the role as a cathode and promote
zincalume corrosion at an increased rate. Electrochemical testing revealed that
zincalume corrosion currents are approximately 1.42 times greater when coupled to
an equal area of mild steel, where the separation distance was less than 1 cm. For
this reason when d > 20 µm, dZA is multiplied by a factor of 1.42.

5.2.3.7 Steel mass loss

Steel mass loss is not expected to occur until zincalume surrounding the area is
consumed. Zincalume mass loss is assumed to occur with the shape of a spherical
cap (see Figure 5.7) where d/a = 1/50. The d/a ratio was adopted from cross-
sectional analysis of a damaged area after significant damage (Figure 5.13). Once a
steel area of 0.5 cm radius is exposed, the zincalume is assumed not to galvanically
protect the underlying steel any more and steel corrosion occurs (Tada et al., 2004).
The 0.25 cm radius area occurs when the effective dZA > 50 µm. Steel corrosion for
a three hour period is given by:

0.00336ln[] 0.00083STEELM Cl= − µm …Eqn 5.7

Figure 5.13 SEM cross-section showing typical damage at the site of a defect. Sample shown was

exposed to 35 cycles of GM9540P accelerated corrosion test.

A summary of the inputs for the model are included in Table 5.4.

 59

Table 5.4 Inputs, parameters and details of mathematics within the Colorbond® degradation model.
Parameter Symbol Units Value Description

Surface condition S 0 = dry

1 = condensed moisture

2 = raining

Determines whether wet or dry. Derived from relative humidity and
surface temperature data in holistic model.

Cumulative time-
of-wetness

TOWcum hours When S = 1 or 2,

)log(0.5(log)
310

cum
cum

cum

TOWL
TOW

−
+=

For both topcoat and backing coat: Lcum=1.41E-13 mol
when TOWcum= 0 hrs.

Cumulative time-of-wetness, where S = 1 or 2 allows leaching of Cr
from primer according to Fick’s second Law.

Leached Cr Lcum mol Lcum is the running accumulation of chromate that would
be leached in the absence of chloride anions.

Lcum is dependent upon the area of primer exposed and not on the
total chromate concentration or liquid volume.

Additional
leaching

Ladd mol
Back:

)log(0.5(log)
310

cum
cum

cum

TOWL
TOW

−
+=

Top:
)log(0.5(log)

310
cum

cum
cum

TOWL
TOW

−
+=

The additional leaching of Cr through the backing coat or topcoat.
Initial values, backcoat =1.128E-13, topcoat = 2.282E-14.

Salt modified
leach rate

LCl mol = ((Lcum+Ladd)*1.2123*[Cl]0.1544) The loss of chromate in a single 3-hour period given that a certain
concentration of chloride is present on the surface.

Latitude LAT Degrees Input to describe the likely photooxidation rate (UV) exposure of paint
films.

Sun/Salt
leaching

Ltotal mol =(1+x*time)*(-0.0004*LAT^2+0.0003*LAT+1.2558)*LCl

x = 0.8 for topcoat, 0.4 for backing sheet.

Leaching as a result of both sun and salt.

x values are derived from Bauer (2000).

Cr remaining Crrem mol Initial - totalL

Crrem = 1.084 × 10-10 – Ltotal mol

Initial Cr present minus the cumulative sum of all leached chromate.
Assuming the primer contains 20 % v/v strontium chromate, the total
available pigment in a 25 µm zone surrounding the defect is of the
order of 0.20 × 18.4 mmol cm-3 × 2.945 × 10-8 cm3 = 1.084 × 10-10
mol. Cr has been shown to leach from no further into epoxy-based
paints than about 25 µm from a defect.

 60

Parameter Symbol Units Value Description

Defect volume V L = 3.92699E-11 for both topcoat and backing coat. Initial volume (50 µm damage) + 25 µm area surrounding damage.
25 µm surrounding damage is the accessible area for Cr to leach
from. Volume is generated from the 5 µm nominal thickness of
primer.

Salt
concentration

[Cl] mg/m2.day Cumulative salt deposition derived from holistic model.

Active chromate
concentration

[Cr] mol/L
10

[() (1)][]
1.084 10

total total remL t L t CrCr
V −

− −
=

×

The estimated amount of chromate in mol/L available to prevent
corrosion. Calculated based upon leached amount and volume.

Non-Cr
zincalume mass
loss

MZA micron Where d > 20 µm, M is multiplied by 1.42 due to
increased galvanic corrosion resulting from steel
exposure.

=0.0000091+0.0000013[Cl]

Mass loss of zincalume calculated based upon holistic model at a
given salt accumulation.

Chromate
dependence

Crdep (0.15+1.85*EXP(-Crdep/0.00002))/0.15 Dependence of corrosion rate on chromate concentration

Actual zincalume
mass loss

dZA micron (Crdep-1)*MZA Estimated real damage to zincalume in terms of depth.

Cumulative
actual zincalume
mass loss

d micron
zad∑

Sum of corrosion damage

Steel corrosion dSTEEL micron 0.00336*LN[Cl]-0.00083 Where g > 50, d is predicted by holistic model for steel mass loss
given a certain salt accumulation.

Cumulative metal
mass loss

dtotal micron
= za std d+∑ ∑

Total depth of penetration into substrate.

 61

5.2.3.8 Preliminary data from model

As a demonstration, the model predictions for the locations of Flinders Naval Base
(Victoria) and Brisbane, Cairns and Charleville (Queensland) are presented. Details
of the input parameter values used to generate results are provided in Table 5.5.

Table 5.5 Abbreviated meteorological data and estimated salt deposition rates.
Location Latitude Estimated % time where

water is condensed on
surface or rain event.

Estimated salt
deposition (mg/m2.day)

Flinders Naval Base 38.3 90 % 300

Brisbane 27.5 50 % 20

Cairns 16.9 83 % 15

Charleville 26.4 33 % 5

Figure 5.14 provides graphical calculations for the model based upon the inputs from
Table 5.5. Further qualification of the model linked to the holistic model is required to
confirm the accuracy of this first attempt model for Colorbond degradation. The
suggested outputs from the model are:

- time for chromate depletion (time to white rusting, d > 0)
- time to penetration of zincalume (d = 20 µm)
- time to red rust initiation (d = 50 µm)
- time to hole generation through sheet (d > 500 µm) [Steel ~ 600 µm thick].

5.2.3.9 Discussion of Colorbond® model

The model produced to date is essentially an attempt to model the degradation of an
extremely complex system. Colorbond®, or painted items in general, are difficult to
quantify due to the often unpredictable nature of installation and treatment of
materials. For instance, a scratch in the paint or incorrect protection at the edges will
have a much larger influence on the longevity of a painted article than a 50 µm defect
assumed in the current model.

Major errors and complications of the model include:

- The exact geometry of the defect is not likely to be 50 µm and geometry of
zincalume corrosion and paint delamination is likely to vary in many cases.

- The wetting and drying rates within a defect and under the paint film are likely
to vary from the surface as a whole.

- Factors affecting or influenced by adhesion of the paint are not considered.
- Salt concentrations within the defect are likely to be higher than on the open

surface. This is expected to result in a more rapid corrosion of the underlying
metal. No factor is currently incorporated to allow for this affect. However,
straightforward experimental studies could validate such factors.

- The exact dimensions of the zincalume and paint films are likely to vary and
also the amount of available chromate pigments in a localised area will vary.

 62

Figure 5.14 Output data from Colorbond® degradation model, a) Flinders topcoat (left), backing coat
(right); b) Brisbane topcoat and backing coat; c) Cairns topcoat and backing coat; d)
Charleville topcoat and backing coat. Green line = remaining chromate, blue line = mass loss
of zincalume, red line = mass loss of steel.

a

b

c

d

 63

5.2.4 Conversion of Mass Loss to Life Estimate

The output from the holistic model is generally a mass loss per year for the metals
and metallic coatings and the paint coatings provide a measure of the damage
accumulation. In order to interface the holistic model with the CBR engine, the
output needs to be converted into a component life, in years.

To convert the mass loss to a component life three additional pieces of information
are required

1. Final Failure Criteria

2. Event “Tree” for failure

3. Conversion from mass loss per year to mass loss over an appreciable time.

5.2.4.1 Final failure Criteria

The failure criteria for a component depends on its use. Three types of criteria are
relevant

1. Structural safety

2. Serviceability

3. Aesthetics

The criteria in each case may be different and needs to be applied separately for roof
sheeting and guttering.

Roof sheeting

1) Structural safety – not relevant

2) Serviceability – no through sheet corrosion

3) Aesthetics:

a) Light criteria – Red rust less than 50%

b) Tight Criteria – No Red rust

Guttering

The criteria for failure would have the same definitions but the user may select
different criteria for roof and guttering.

5.2.4.2 Event Tree For failure

The event tree for failure would be different for different materials and criteria. These
required events are set out in Table 5.6 and definitions of these events in Table 5.7.

 64

Table 5.6 Required Events for Failure
Material Criteria Event 1 Event 2 Event 3

Colorbond® Serviceability Failure of
polymeric coating

Failure of
Zincalume
coating

Through
Corrosion of
Steel substrate

Colorbond® Aesthetics-A Failure of
polymeric coating

Failure of
Zincalume
coating

50% Red Rust

 Aesthetics -B Failure of
polymeric coating

Failure of
Zincalume
coating

Zincalume Serviceability Failure of
Zincalume
coating

Through
Corrosion of
Steel substrate

 Aesthetics-A Failure of
Zincalume
coating

50% Red Rust

 Aesthetics -B Failure of
Zincalume
coating

Zincalume Serviceability Failure of Zinc
coating

Through
Corrosion of
Steel substrate

 Aesthetics-A Failure of Zinc
coating

50% Red Rust

 Aesthetics -B Failure of Zinc
coating

Table 5.7 Definition of Failure

Event Definition Explanation

Failure of polymeric
coating

D= 1 D is damage index

Failure of
Zincalume coating

ML= 0.75* Coating Mass Coating mass is specified for all materials
– assume Coating mass = 150 g/m2

Failure of Zinc
coating

ML= 0.75* Coating Mass Coating mass is specified for all materials
– assume Coating mass = 275 g/m2

Through Corrosion
of Steel substrate

TL= 1 * Component Thickness Component Thickness is specified for all
materials assume = 0.6 mm

50% Red Rust TL=0.1 mm.

5.2.4.3 Derivation of Events from Holistic Model

Polymeric Coatings

The holistic model gives D per year which is to be called d

D = d*Tn …Eqn 5.8

Here T is time in years , n is a constant which can be taken as 1.1

 65

Zincalume

The holistic model gives ML per year which is to be called m

ML = m*Tn …Eqn 5.9

Here T is time in years , n is a constant which can be taken as 0.6.

Zinc Coating

The holistic model gives ML per year which is to be called m

ML = m*Tn …Eqn 5.10

Here T is time in years , n is a constant that depends on m

n= 0.62+0.212ln(m/14.2), n>=0.62. …Eqn 5.11

Steel

Holistic model gives ML per year which is to be called l

TL = C*l*Tn …Eqn 5.12

Here T is time in years , C is a rust concentration factor (set at 2.5) n is a constant
that depends on l

n= 0.62+0.212ln(l/14.2) …Eqn 5.13

5.2.5 Gutter Survey

A roof and gutter survey carried out by CSIRO MIT has been used to determine
some parameter values in the modified holistic model for gutters. The age and
condition of a number of gutters were assessed and the data is reported in CRC
report 2002-059-B No 10, Summary of Gutter Survey by CSIRO.

The buildings surveyed were located in 7-10 Km radius of CSIRO at Highett (Figure
5.2) which has a salt deposition of approximately 8 mg/m²·day and a corrosion rate
for steel of approximately 10µm/year (See 5.2.1.1 above).

The buildings surveyed were of various construction types and the gutters were
basically Colorbond®, galvanised, Zincalume or copper. The copper gutters were

 66

ignored, they were in good condition after 25+ years and are not typical of current
building practice. Gutters that did not have a painted coating on the inside, were
deemed to be the corresponding base metal in type. That is some Colorbond®
gutters were Colorbond® on the outside and so were deemed to be Zincalume. Also
a number of the galvanised and Zincalume gutters were painted on the outside but
not the inside, so they were typed as their metal type.

In general the all the gutters had some dirt present in them, most had a complete
covering of the bottom or were full of dirt and leaf litter.

5.2.5.1 Damage Scale

In order to interpret the data a damage rating scale was conceived for the gutters.
The scale went from 0 with no damage to 5 with perforation of the gutters. Table 5.8
details the rating scale used to rate the gutters.

Table 5.8 Legend of damage ratings for Gutter survey

Damage
Rating

Condition Condition around joints

0 No Damage No Damage

1 Some loss of paint gloss/coating (Top coat
only on multi-coat systems), dulling of surface

Discolouration of paint at joins and near rivets,
fasteners or brackets

2 Loss of paint (chips lost, peeling, undercoat
may still be intact),
White corrosion product less than 50%

Some corrosion of rivets, fasteners or brackets

3 Some red rust present, less than 50% of a
particular area ie, bottom surface

White corrosion products on rivets, fasteners
or brackets and cut edges

4 50- 100% red rust Red rust and white corrosion products on
rivets, fasteners or brackets and cut edges

5 Perforation Loss of rivets, fasteners or brackets,
perforation of material

5.2.5.2 Summary of Gutter Data

The gutter information from the survey is summarised in Table 5.9. The corrosion
level shown in the table is based on the Corrosion map of Melbourne 1979-80 (King,
Martin and Moresby, 1982), and is in µm/year loss of metal from Low Alloy Copper
Barring Steel coupons, a standard corrosion coupon used by CSIRO for corrosion
mapping work. This gives an indication of the aggressiveness of the environment.

 67

Table 5.9 Summary of gutter survey to April 2005
Painted Gutter Condition Name Age

(yrs)
Distance
to Bay
(km)

Longitude Latitude Corrosi
on level
(µm/yea
r)

Gutter type

Outside Inside Bottom
Inside

Inside
sides

Outside Around
joins &
cutouts

B1 <1 2.4 145° 0.84’ E 37° 54.91’ S 13 Colorbond® 0 0 0 0
D1 6.5 4 145° 7.06’ E 37° 58.91’ S 17 Zincalume® Yes 3 2 0 0
C1 10 4.5 145° 3.52’ E 37° 57.08’ S 16 Zincalume® Yes 3 1 0 0
M1 ~15 1.8 145° 4.61’ E 37° 58.75’ S 17 Galvanized Yes Yes 3 1 0
BR1 30 0.15 145° 0.85’ E 37° 58.31’ S 22 Galvanized Yes 4 3 3 0
C2 25 2.5 145° 4.82’ E 37° 58.34’ S 17 Zincalume® Yes 2 1 0
P1 7 0.8 145° 4.67’ E 37° 59.51’ S 17 Colorbond® 0 0 0 4
B2 10-15 1.8 145° 0.42’ E 37° 55.17’ S 15 Zincalume® Yes 2 2 0 0
H1 >30 4 145° 3.28’ E 37° 57.16’ S 15 Galvanized Yes 4 4 Lip 4

rest 2
?

CY1 3 9 145° 7.81’ E 37° 55.68’ S 15 Zincalume® Yes 0 0 0 0
B3 >20 0.8 144° 59.75’E 37° 53.75’S 15 Galvanized Yes 4 2 2
B4 30 0.9 144° 59.79’E 37° 53.61’S 15 Galvanized 5 3 5 2
B5 15 1.4 145° 0.06’E 37° 54.06’S 13 Zincalume® Yes 3 2 0 2
B6 5 1.4 145° 0.06’E 37° 54.06’S 13 Colorbond® 1 0 0 3
A1 5 10 145° 5.56’E 37° 52.15’S 13 Colorbond® 0 0 0 2
CH214 26 3 145° 2.43’E 37° 57.02’S 17 Galvanized 4 3
CH303 50? 3 145° 2.43’E 37° 57.02’S 17 Galvanized 4
CH301 55 3 145° 2.43’E 37° 57.02’S 17 Galvanized 5 4 5
CH201 48 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes 5 5
CH207 35 3 145° 2.43’E 37° 57.02’S 17 Copper
CH208 27 3 145° 2.43’E 37° 57.02’S 17 Copper
CH213 25 3 145° 2.43’E 37° 57.02’S 17 Zincalume® Yes 4
CH213a 16 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 0 0 0 0
CH101a 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 0 0 0 0
CH101 26 3 145° 2.43’E 37° 57.02’S 17 Copper box
CH102 38 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes 5 5
CH106 <26 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 0 0 3
CH109 3 145° 2.43’E 37° 57.02’S 17 Galvanized 5 5
CH207a <10 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 0 0 0 0
CH208a <10 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 0 0 0 0
CH41a <10 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 3 3 3

 68

Painted Gutter Condition Name Age
(yrs)

Distance
to Bay
(km)

Longitude Latitude Corrosi
on level
(µm/yea
r)

Gutter type

Outside Inside Bottom
Inside

Inside
sides

Outside Around
joins &
cutouts

CH25 28 3 145° 2.43’E 37° 57.02’S 17 Galvanized 5 5
CH11 46 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes 5 4 5
CH27 35 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes 5 5
CH29 10-15 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 0 0 0 2
CH29a 10-15 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 0 0 0 2
CH13 38 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes 5 5
CH13a 10 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 0 0 0 0
CH13b 10 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 3 1 1
CH12a 10 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 0 1 3
CH14 38 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes 5 5
CH15 20 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 0 2
CH15a 37 3 145° 2.43’E 37° 57.02’S 17 Galvanized Yes 3
CH15a 10? 3 145° 2.43’E 37° 57.02’S 17 Colorbond® 3 0 0
CH35 27 3 145° 2.43’E 37° 57.02’S 17 Zincalume® Yes No 2 2 2 2

 69

The corrosion levels are all between 13 and 22µm/year. These are typical values for
Melbourne and not considered severe.

The data collated in Table 5.9 is shown graphically in Figure 5.15, Figure 5.16 and Figure
5.17.

Figure 5.15 Graphical representation of the state of Galvanised gutters with age

Galvanized Gutters

0

1

2

3

4

5

0 10 20 30 40 50 60

Age (years)

R
at

in
g

(0
-5

)

Around joins & cutouts
Outside
Inside sides
Bottom Inside

Figure 5.16 Graphical representation of the state of Zincalume gutters with age

Zincalume Gutters

0

1

2

3

4

5

0 5 10 15 20 25 30

Age (years)

R
at

in
g

(0
-5

)

Around joins & cutouts
Outside
Inside sides
Bottom Inside

Painted inside
Gutter

 70

Figure 5.17 Graphical representation of the state of Colorbond® gutters with age

Colorbond Gutters

0

1

2

3

4

5

0 5 10 15 20 25 30

Age (years)

R
at

in
g

(0
-5

)

Around joins & cutouts
Outside
Inside sides
Bottom Inside

*Possible non standard Colorbond

The graph for the galvanised gutters shows ages up to 60 years while the Zincalume® and
Colorbond® graphs only show up to 30 years. While Colorbond® was introduced into
Australia in the mid 1960s, it was only coated on one side and used galvanised steel as a
base metal. Zincalume® was introduced to Australia in the 1970s and Colorbond® at that
time changed to having Zincalume® as the base material and was coated on both sides. This
is why we only have data up to 30 years for Colorbond® and Zincalume®. During this time
numerous Colorbond® paint systems have been used with each one having slightly different
weathering properties.

Looking at the galvanised gutter graph, Figure 5.15, the gutters show some damage between
10 and 20 years and significant damage requiring replacement after approximately 20 to 30
years. It should be noted that the youngest galvanised gutter surveyed was 10 years old.

The Zincalume® gutters, Figure 5.16, show some damage after 7 to 10 years with one gutter
showing significant damage requiring replacement at 25 years.

The graph of the Colorbond® gutters, Figure 5.17, shows damage on some of the gutters
after 5 to 10 years with some showing spots of red rust. The oldest gutters were 20 to 25
years old and none of the gutters showed enough damage to consider replacement.

5.2.5.3 Conclusions from Survey

From this gutter survey it is concluded that galvanised gutters in the survey area show some
damage by 10 years, with significant damage, leading to the need for replacement, at around
20 years. The Zincalume® gutters showed some damage around 10 years and replacement
was needed after 25 years. The Colorbond® gutters showed some damage after 5 years,
but no significant damage causing the need for replacement in any of the gutters surveyed
with the oldest being approximately 20-25 years.

 71

5.2.6 Holistic Model Program for Gutters

The modifications made to the holistic model to adapt it for use with gutters have been
incorporated into a stand-alone program, mainly for development purposes, but it can be
used to model mass loss for gutters at any point in Australia.

The Holistic model as outlined previously contains a number of modules (Figure 3.5) to:

a) predict the salinity at a location

b) predict the climate at a location

c) predict salinity retention on a component on a building

d) predict the state of a surface on a component on a building

e) predict the damage of the component on the building.

In adapting the holistic model for the gutter application:

a) and b) were unchanged from the prior holistic model,

c) modifications were made to constants in the model to reflect the different cases for
gutters but the basic formulation remained the same,

d) modifications were made for the case of a gutter filled with dirt and debris (TOW),

e) modifications made for galvanised steel and zincalume and completely developed for
Colorbond.

5.2.6.1 Salinity Retention

In calculating whether salt will be retained on a surface in the event of rain it is assumed that
salt cleans off a surface according to the following relationships:

Di after wash = Φ + ψ* Di-1 ...Eqn 5.14

Where Di is the retained salt after a rain event and Di-1 is the deposited salt prior to a rain
event . Φ is taken as 1 and the values of ψ are given in Table 5.10. Here LMI, SMI and HMI
refer to low ,medium and high moisture index which is a parameter which describes the rate
of evaporation and O refers to open exposure (gutter bottom and edges) and S to sheltered
(underside of gutter).

Table 5.10 Values of ψ defined for various parameter combinations

Moisture Index Open/Sheltered ψ

LMI O 0.1

 S 0.6

SMI O 0.5

 S 0.6

HMI O 0.5

 S 0.6

 72

5.2.6.2 State of surface of building component

Three states of a surface are defined

a) S1 – dry

b) S2 –wet from wetting of hygroscopic salts

c) S3 - wet from rain

The holistic model calculates state on a three hour interval. The standard model assumes
that a surface is in state 3 whenever rain is occurring but once the rain has ceased, it is dry
before the next 3 hour period .If the rain ceased in the middle of the last time period this
implies drying takes no more than 1.5 hours. The studies of gutters indicates that this is a
reasonable assumption for all cases, except the bottom of gutters filled with dirt and debris.
For this case it is assumed that the gutter remains in State 3 for 48 hours after rain.

5.2.6.3 Damage to Components

The damage to components is also calculated each three hours from a knowledge of the
state of the component, the retained salinity and climatic parameters. Two different
approaches are used for a) uncoated metals (steel, galvanised steel and zincalume) and b)
coated steel.

Uncoated Metals

The standard holistic methods is used in which the corrosion rate is calculated each three
hours according to the following equations:

Ms1 = 0 …Eqn 5.15

Ms2 = ζ*M2 …Eqn 5.16

Where M2 depends on RH

For 35<RH<75

M2= З + Φ* D Φ …Eqn 5.17

Where D is the retained salt and the values of the constants are given in the Table 5.11–
Table 5.16.

For RH>75

M2= Θ + Ω *D Ψ …Eqn 5.18

 73

For State 3

Ms3= ζ * M3 …Eqn 5.19

In the case of M3, the rate of mass loss varies on the basis of the component case (gutter –
edge, bottom(cleaned and uncleaned) or sheltered). This approach is based on the
understanding that significant salt will be retained in the dirt at the bottom of the gutter and
this will significantly increase the corrosion rate for gutter bottoms in an uncleaned condition.
In fact in a future version of the model it would be desirable to introduce a retained salt
dependence into M3 and then remove this component case dependence.

Table 5.11 Constants for galvanised steel mass loss in State 2

Θ 0.02

Ω 0.027

Ψ 0.5

З 0.02

θ 0.027

Φ 0.5

ζ 1

Table 5.12 Constants for galvanised steel mass loss in State 3

 ζ

open 1

sheltered 2

Partial sheltered 1.5

Table 5.13 Additional constants for galvanised steel mass loss in State 3

Case Ms3

Gutter-sheltered 0.02

Gutter-open -edge 0.05

Gutter-open bottom-uncleaned 0.6

Gutter –open bottom-cleaned 0.05

Table 5.14 Constants for Zincalume mass loss in State 2.

Θ 0.027

Ω 0.004

Ψ 0.5

З 0.0

θ 0.002

Φ 0.5

ζ 1

 74

Table 5.15 Constants for Zincalume mass loss in State 3
 ζ

open 1

sheltered 2

Partial sheltered 1.5

Table 5.16 Additional constants for Zincalume mass loss in State 3.
 Ms3

Gutter-sheltered 0.027

Gutter-open -edge 0.05

Gutter-open bottom 0.15

Gutter –open bottom-cleaned 0.05

5.2.6.4 Application of the Model

To test the model, the mass losses at two locations in southern Queensland were estimated.
One was a Marine location and the other a benign location (Table 5.17). In Table 5.18 a
comparison of the estimate of the life of gutters based on the Delphi study, roof survey and
holistic model is made. It is apparent that the lifespan estimates are similar when like cases
are considered.

Table 5.17 Estimated mass loss at two locations in Queensland
Longitude Latitude Salinity Exposure Mass

loss –
g/m2.

153 441 28061 38 Open bottom zincalume NC 19

 Open bottom zincalume C 13.5

 sheltered zincalume 7.3

 Open edges zincalume 8.9

153 441 28061 38 Open bottom galvanised NC 33

 Open bottom galvanised C 31

 sheltered zincalume galvanised 31

 Open edges galvanised 18

153 425 28049 6 Open bottom zincalume NC 67

 Open bottom zincalume C 16

 sheltered zincalume 9

 Open edges zincalume 12

153 425 28049 6 Open bottom galvanised NC 56

 Open bottom galvanised C 18

 sheltered zincalume galvanised 11

 Open edges galvanised 18

 75

Table 5.18 Comparison of Gutter Life by Model and other Methods
Location Component Case Method Life

Marine Unspecified position, galvanised Delphi 10

Benign Unspecified position galvanised Delphi 32

Marine Unspecified position Zincalume Delphi 21

Benign Unspecified position Zincalume Delphi 42

Marine Unspecified position galvanised Survey 15

Benign Unspecified position galvanised Survey 55

Benign Unspecified position zincalume Survey >40

Marine Sheltered-galvanised Holistic Model 15

Marine Internal Edge-galvanised Holistic Model 33

Marine Internal –bottom –cleaned-galvanised Holistic Model 15

Marine Internal –bottom –not cleaned-galvanised Holistic Model 14

Benign Sheltered-galvanised Holistic Model 33

Benign Internal Edge-galvanised Holistic Model >60

Benign Internal –bottom –cleaned-galvanised Holistic Model 33

Benign Internal –bottom –not cleaned-galvanised Holistic Model 7

Marine Sheltered-zincalume Holistic Model 24

Marine Internal Edge-zincalume Holistic Model 37

Marine Internal –bottom –cleaned-zincalume Holistic Model 16

Marine Internal –bottom –not cleaned-zincalume Holistic Model 5

Benign Sheltered-zincalume Holistic Model 37

Benign Internal Edge-zincalume Holistic Model 50

Benign Internal –bottom –cleaned-zincalume Holistic Model 21

Benign Internal –bottom –not cleaned-zincalume Holistic Model 13

5.3 CBR Queensland Schools’ Gutter User Interface

A GUI has been created to allow users to interrogate the CBR program developed for the
gutters in the Queensland Schools application (Figure 5.18). A subset of schools in the
Southern coastal regions has been used in the program and can be accessed through a drop
down menu. A red cross will indicate the position on the map of Queensland. If a school is
not chosen, the map of Queensland can be used to select points within the state which will
define the longitude and latitude.

Dropdown menus have been incorporate to allow selection of gutter components and
materials etc. Check boxes define whether the component under consideration is
Maintained, or Cleaned etc. The search button at the bottom initiates the CBR engine and
matching cases are retrieved and shown in the bottom right window, with the corresponding
similarity index. Database matches are also shown in the table to the left; all three gutter
material types are listed. A button at the bottom of the window can be used to get further
details of the matching cases listed.

 76

Figure 5.18 GUI developed for the Queensland schools' gutter application

5.4 Utility of Present Results

As demonstrated in Section 5.2.6 with the comparison of results from different sources, there
is good correlation between the various methods. However, before the modified holistic
model is released commercially, it requires more verification and collection of data on
maintenance and lifespans of gutters of the different materials.

School

Roof or gutter component

Material

Maintenance and cleaning

 information

Location in building

Marine application?

Matching cases

with similarity index

Matches from databases

Longitude and latitude

 77

6. QDMR APPLICATION

Maintenance of bridge structures is a major issue for the Queensland Department of Main
Roads so this was chosen as the focus of the application for this industry partner. The
general cases defined for the CBR engine are based around building components. These
are obviously not directly applicable to metallic components in bridges. Therefore, any CBR
driven program for corrosion in bridges will require the definition of bridge elements (relevant
to bridges constructed in Queensland) to be used as the basis for case construction and
comparison.

Five representative bridge structures were provided by the QDMR and analysed. The five
bridges are the Gladstone Port Access Road Overpass, Stewart Road Overpass, South
Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge. Common
elements were determined so that the results can be interpolated across the range of bridge
types in Queensland. This work is reported in detail in CRC Report 2002-059 No 9, Salt
Deposition on Queensland Bridges, prepared by David Paterson.

6.1 Analysis Methodology

The salt deposition on the five representative bridge structures was computed using
computational fluid dynamics (CFD). Upstream and ground boundary conditions were
derived from the Geographical Information System (GIS) for salt deposition and metal
corrosion in Australia. The results have been summarised by dividing by the deposition that
would occur on a salt candle at the same location and by averaging over a set of physical
locations (zones) on each bridge.

6.1.1 Computation Method

CFD is basically the solution of the conservation of mass and momentum equations on
computer. The conservation of momentum in fluids is known as the Navier-Stokes equation.
This is a partial differential equation with three vector components (x, y, z). The equations
are solved in averaged form because the time-dependent details of turbulence can’t be
resolved. This adds the term for the mean square turbulence into the momentum equations,
and a turbulence model is used to solve for the mean square turbulence.

In mathematics, the mean square turbulence is 3/2k , the turbulence intensity is 3/2k
divided by the mean velocity, and the rate of dissipation of k is called ε . The k-ε turbulence
model is a very old model that has become the industry standard. It has two extra partial
differential equations, one each for k and ε . The Re-Normalisation Group (RNG) turbulence
model is a more modern variant based on the mathematics of re-normalisation familiar from
quantum mechanics.

The solution of these partial differential equations was done using the commercial CFD
program CFX 5.7. CFX 5.7 uses a finite volume analysis method with an unstructured grid.
The finite volume method is similar to the finite-element method commonly used in structural
engineering, but differs in enforcing exact conservation of convected quantities on pre-

 78

defined volumes/elements. Turbulence was computed using the k-ε model and this was
compared with the RNG turbulence model for two bridges.

For each bridge approximately 100,000 salt spray aerosol particles were released upstream
of the bridge section and tracked using Lagrangian methods. Deposition rates in mg m-2 were
calculated automatically from this by averaging over small elements of the bridge surface.
Results were checked by trying a range of different aerosol release areas and release
strategies (uniform vs random) for each bridge.

The aerosol particles were assumed to be statistically random in diameter, with prescribed
mean, standard deviation and the volume of the droplets was described by a normal
distribution. This approach correctly simulates the total salt deposition without the need to
model exorbitant numbers of very small particles.

It was not assumed that the air flow over each bridge was free from vortex shedding, but that
proved to be the case for each of the final simulations reported here.

The assumed roughness of the concrete for each bridge is 0.3 mm. This only has a small
influence on the deposition of salt on the bridge near the coast or when the relative humidity
is high (as assumed here) because the moisture in the transported aerosol sticks the salt to
the concrete. The assumed roughness has a large influence when the salt deposition rate is
very low at low relative humidities (below 33%).

6.1.2 Information Supplied by QDMR and extracted from the GIS

The DMR supplied drawings and aerial photographs on each of the five bridges. They also
supplied locations, latitude and longitude and environmental data for each bridge. The GIS
provided the distance to the coast and the representative local vegetation height (allowing for
urban development).

Mean wind data is extracted from climatic information from the Australian Bureau of
Meteorology. The data used is the morning and afternoon wind speeds and directions for the
four seasons at adjacent weather stations. Sea breezes are accounted for by the difference
between morning and afternoon data.

The distance to the coast was also calculated from maps and atlases and compared with two
different sets GIS data. For bridges within four kilometres of the coast there was often a
significant discrepancy between the three figures, and the one thought to be most accurate
was selected.

The GIS database for vegetation contains the primary vegetation type, the fractional ground
cover by this vegetation, and the understorey vegetation type. It also contains urban
development details if they’re relevant. From this, algorithms developed at CSIRO were
used, together with the mean wind velocity, to determine the wind velocity profile and
turbulence intensity at each site. The vegetation was assumed to be of uniform height for the
purposes of computation.

 79

The bridge height above mean water level was used in conjunction with the wind velocity
profile in setting the upstream wind speed and maximum turbulence length scale.

The mean and standard deviation salt aerosol particle diameter were calculated from an
algorithm developed at CSIRO based on the distance from the coast and the effect of the
size of Australian weather systems on the length of the wind path.

A constant relative humidity of 70% was used to calculate the density of the salt-containing
aerosols. This is a typical relative humidity experienced in Queensland.

6.1.3 Defining Common Elements

The deposition of salt on any structure depends on two independent processes. The first is
the transport of salt aerosol to the vicinity of the structure and the second is the effect of the
shape of the structure on the deposition rate. The first of these can be measured by a salt
candle. The salt deposition measured by a salt candle at any location can be reliably
extracted from the GIS model of metallic corrosion.

For each bridge, a separate computation was done of deposition on a salt candle at the
same location. The ratio of the deposition on the bridge to that on the salt candle quantifies
the effect of the shape of the structure on the deposition rate.

For the comparison of different bridge superstructures, results were averaged over a set of
physical locations (zones) on each bridge. These zones are shown for two typical bridge
cross sections in Figure 6.1.

Figure 6.1 The layout of zones on two typical bridge cross sections.

1. Road surface and median
strip

2. Bridge undersurface
3. Side face
4. Handrails
5. Side of support beams
6. Undersurface of support

beams
7. Protected undersurface
8. Lane divider and inside the

parapet
9. On top of the parapet and

under the side overhang
If the support beams are closer
than 100 mm apart then "2"
applies instead of "5, 6 and 7".

The deposition rates in these zones can depend on the detailed bridge design. Some zones
will have similar deposition rates.

 80

6.2 Analysis of the Five Bridges

The five bridges are the Gladstone Port Access Road Overpass, Stewart Road Overpass,
South Johnstone River Bridge, Johnson Creek Bridge, and Ward River Bridge (see Figure
6.2).

Figure 6.2 Locations of the five bridges analysed

For the bridges described below, the abbreviation DSC means “times the deposition on a salt
candle away from obstacles at the same location”. Table 6.1 gives a summary of the
computed results. For approximate Zone locations see Figure 6.1; for details see each bridge
in turn.

The salt deposition is influenced by the height to width ratio (H:W) of the superstructure.
There is a critical H:W ratio, similar to that of the bridge over the Ward River, that maximises
the salt deposition on the downwind side of the superstructure (Zone 3 landwards). The H:W
ratio for the Johnson Creek Bridge is intermediate between that of the Stewart Road
Overpass and the South Johnstone River Bridge and all use deck units; that explains why
the deposition on Zone 2 for the Johnson Creek Bridge is intermediate between the other
two.

 81

Table 6.1 A summary of computed results; salt depositions on the 9 zones for the 5 bridges in DSC. u′/U is the
upstream turbulence intensity and H:W is the height to width ratio of the superstructure.

 Gladstone Stewart Sth Johnstone Johnson Ward

u' / U 0.29 0.18 0.12 0.41 0.3

 H:W 1:3.7 1:13.3 1:5.7 1:7.3 1:4.1

1 0.65 0.19 0.79 0.36 1.13

2 0.27 0.97 0.58 0.89

3 seawards 1.30 1.47 1.46 1.66 1.22

3 landwards 0.27 0.11 0.69 0.08 0.72

3 average 0.79 0.79 1.08 0.87 0.97

4 2.53 1.59

5 0.38 0.37

6 1.03 1.06

7 0.18 0.87

8 0.44 0.41 0.55 0.95 0.66

Zone

9 0.50 0.69 0.80 0.80 0.78

The upstream turbulence intensity (u' / U) influences salt deposition in conjunction with the
bridge roughness, the mean aerosol size and the relative humidity. For a smooth surface (eg.
glass) with small aerosols (< 3 µm in diameter) the salt deposition rate can be so small as to
be negligible. The same can be true when the relative humidity is low (< 33%). In these
computations the surface is assumed to be rough enough and the relative humidity high
enough for salt deposition to occur. In this case the deposition rate depends critically on u' /
U, particularly when the aerosols are small. However, the effect of u' / U affects both the
bridge and salt candle so the DSC value is relatively unchanged.

The salt deposition is also influenced by the structural details. For instance, the girders are
further apart at Ward River than at Gladstone and this largely explains the difference in
deposition between the girders (Zone 7). The high parapets on the Stewart Road Overpass
help to explain the low deposition rate on the road surface there (Zone 1).

6.2.1 Gladstone Port Access Road Overpass

The Gladstone Port Access Road Overpass in Gladstone City is located at latitude 23°51’
and longitude 151°30’. It is on the Gladstone Port Access Road between Glenlyon Road and
the Port Precinct and passes over the top of Auckland Street and the railway lines. There is
ocean to the North, North East and East of this bridge.

The bridge comprises twelve spans ranging in length from 28.4 metres to 37 metres. The
superstructure consists of a reinforced concrete deck on rectangular prestressed concrete
deck units for span 12 and on five T-ROFF trough-shaped prestressed concrete girders for
spans 1 to 11. For these 11 spans the total width of the superstructure is 10.44 metres and
the height is 2.81 metres, giving a height to width ratio of 1:3.7.

 82

The salt deposition on the superstructure deck section for spans 3 to 5 and 9 to 11 was
modelled on computer. This has a shorter parapet than spans 1, 2, 6, 7 and 8. In the
second set of spans the salt deposition on the roadway is expected to be less because the
road deck is protected by the higher parapet whereas the deposition on the underside is
expected to be much the same. A preliminary computer simulation for spans 1, 2, 6, 7 and 8
suggested that it may be associated with vortex shedding in some winds.

The bridge height of the bridge deck in the centre spans varies from about 8.3 to 9.6 metres
above ground level. In the simulations it is assumed to be 9.3 metres above ground level.

The salt deposition on a salt candle, extracted from our GIS database at the location of
Gladstone for a marine environment at the latitude and longitude given, is 13.3 mg.m-2.day-1.
This does not take into account the bridge height.

The deposition on the salt candle for each bridge was also computed. Tracks of 35 of the
2678 particles that deposited on the salt candle for Gladstone are shown in Figure 6.3. In all,
50,000 aerosol particles released upwind. The salt candle has a diameter of 25.4 mm. The
flow domain is 300 mm long by 200 mm high. The grid contains 86,000 elements. It extends
out of this plane a distance of 13 mm.

Figure 6.3 Tracks of 35 particles deposited on a salt candle in the same flow conditions as those of the Gladstone

Port Access Road Overpass. Wind flow is from left to right

More salt is deposited on the front of the candle than the back. The cylindrical candle
shelters the region directly downstream, leading to a low salt concentration in the air there. A
pressure wave upstream of the cylinder increases the salt concentration there above ambient
levels.

Figure 6.4 shows the flow domain size and grid resolution used for simulation of wind flow
around the superstructure of the Gladstone Port Access Road Overpass. The flow domain is
35 metres long by 16 metres high. The flow is from left to right. The domain is extended in
the downwind direction to stop the downwind boundary conditions on velocity and turbulence
feeding back into the flow and altering the pressure distribution around the structure; this is
standard practice. The grid is finer around the bridge. The grid contains 86,000 elements. It
extends out of this plane a distance of 0.5 metres.

 83

Figure 6.4 The flow domain size and grid resolution used for the superstructure of the Gladstone Port Access
Road Overpass

The deposition on the superstructure was checked using three different aerosol release
strategies. In one aerosols were released directly upwind of the bridge, in the second they
were released in bands above and below the bridge, in the third they were released over a
broad area. Results for Gladstone are shown in Figure 6.5. The aerosol was diffused
upstream due to turbulence.

Figure 6.5a shows the volume fraction of salt of aerosols that were released just upstream of
the bridge, within 1.4 metres of the mid-height. The salt is transported first to the leading side
of the parapet and much salt is deposited there. The flow separates from the top of the
parapet, leaving an open recirculation region (shown in blue) behind it over the bridge deck.
The flow separating from the bottom edge of the parapet hits the lower portion of the first T-
ROFF girder. The flow separates again from the bottom of the first girder.

In Figure 6.5a both the turbulence in the mean wind and that generated by the bridge itself
slowly brings salt into the recirculation regions. Over the bridge deck, it is seen that this
increases the deposition on the leeward side of the bridge deck. Salt becomes trapped in the
recirculation regions between the bridge girders, but although the concentration of the salt in
the air between the girders is high, not much of it is deposited on the girders and the
underside of the deck. The turbulence also brings some salt back onto the back of the
downwind parapet, but not much.

Figure 6.5b shows the volume fraction of salt when aerosols were released between 1.4 and
2.8 metres of mid-height. There is less deposition on the upwind side of the parapet because
the high pressure there deflects the salt away. More salt is trapped in the recirculation region
over the front of the bridge deck. More salt is trapped between the second and third bridge
girder.

Figure 6.5c shows the sum of the top two figures plus salt released further from mid-height.
The locations of the recirculation regions are now less clear. Salt concentrations in the air are
now seen to be highest behind three of the girders and the leading parapet but the actual
depositions in these regions, as shown by the colours on the surfaces, is still quite low.

 84

Figure 6.5 Volume fraction of salt around the superstructure of the Gladstone Port Access Road Overpass; a)
particles released within 1.4 metres of the mid-height, b) particles were released between 1.4 and 2.8
metres of mid-height, c) all salt aerosol particles. Flow is from left to right. Red is high concentration
and blue is low concentration.

a)

b)

c)

 85

Figure 6.6 shows the locations of the zones used in analysing the deposition on the
superstructure of the Gladstone Port Access Road Overpass. This is referred to in the
subsequent graphs of salt deposition and in Table 6.1.

Figure 6.6 The locations of the zones for the superstructure of the Gladstone Port Access Road Overpass

Figure 6.7 shows the salt deposition on the Gladstone Port Access Road Overpass,
measured relative to the salt candle deposition of 13.3 mg m-2 day-1 at the same location. In
Figure 6.7a the line marked “top” includes Zones 1 and 8, i.e. the top of the bridge deck and
the inside of the parapets. The deposition is highest on the inside face of the downwind
parapet. The deposition on the top of the bridge deck reaches a maximum of about 0.95
DSC in the middle of the deck, where DSC means “times the deposition on a salt candle
away from obstacles at the same location”.

The line marked “under” includes Zones 5, 6 and 7, i.e. the underside of the bridge deck and
all sides of the trough-shaped girders. The spikes on the graph represent the greatest salt
deposition on the upwind faces of the girders. These are largest near the bottom of the
girders. The bottoms of the girders have a salt deposition comparable in magnitude to that on
the top of the deck, e.g. that below the centre of the bridge has an average deposition of 1.2
DSC. The deposition in the protected areas of the underside of the bridge deck between the
girders varies from near zero in the downwind half of the superstructure to 0.55 DSC three
metres upwind of the bridge centre.

Figure 6.7b shows the salt deposition on the upwind face of the upwind parapet and the
downwind face of the downwind parapet. That on the downwind (sheltered) face is about
0.25 DSC. That on the upwind (exposed) face is largest near the bottom, larger than average
near the top, and roughly 1.1 DSC between the two.

To summarize the deposition on this superstructure, it is largest on upwind faces,
intermediate on horizontal faces and least on downwind faces and in protected parts of the
under bridge deck. The highest deposition rates of all are on the bottom edges of the two
downwind girders and of the upwind face of the upwind parapet.

 86

Figure 6.7 Salt deposition on the Gladstone Port Access Road overpass measured relative to the salt candle
deposition

a)

Gladstone Port Access Road Overpass Spans 3-5 and 9-11
Salt Deposition

0

0.5

1

1.5

2

2.5

3

3.5

-6 -4 -2 0 2 4 6
Horizontal distance from highest point of bridge (m)

S
al

t D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
S

al
t C

an
dl

e

Top
Under

b)

Gladstone Port Access Road Overpass Spans 3-5 and 9-11
Salt Deposition

0

0.5

1

1.5

2

2.5

3

-2 -1.5 -1 -0.5 0 0.5 1 1.5
Height (m)

Sa
lt

D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
Sa

lt
C

an
dl

e

Downwind
Upwind

6.2.2 Stewart Road Overpass

The Stewart Road Overpass in Gold Coast City is located at latitude 28°8’ and longitude
153°27’. It is on the Pacific Highway at the northern end of the new Tugun Bypass in
Currumbin. There is ocean to the North, North-East and East of this bridge. The bridge has
two spans of 21.8 metres. The superstructure consists of a reinforced concrete deck on 45
Type A prestressed concrete deck units. The units are laid with a nominal 35 mm gap. For
the salt deposition simulation these deck units are taken together as a single unit but the
gaps between them are used to together with concrete properties in estimating the
aerodynamic roughness of the underside of the bridge. The superstructure is very wide with
a total width of about 30.7 metres and the height is 2.3 metres, giving a height to width ratio
of 1:13.3.

 87

The height in the centre of the bridge deck is assumed to be 8.0 metres above ground level
in the computer simulations of salt deposition.

The salt deposition on a salt candle was extracted from our GIS database at the location of
the bridge for a marine environment at the latitude and longitude given, 38.9 mg.m-2.day-1.
This does not take into account the bridge height.

The analysis of wind flow and salt deposition was carried out in a similar manner to the
previous bridge and the results for the Stewart Road Overpass are shown in Figure 6.8.

Figure 6.8a shows the volume fraction of salt of aerosols that were released well upstream of
the bridge, within 1.2 metres of the mid-height. The salt is transported first to the leading side
of the parapet and much salt is deposited there. The flow separates from the top of the
parapet, leaving an open recirculation region (shown in blue) behind it over the first barrier
and the front portion of the bridge deck. The flow separating from the bottom edge of the
parapet hits the lower portion of the first prestressed concrete deck unit. The salt-containing
flow separates again from the bottom of this deck unit but reattaches a short distance along
the underside of the deck.

In Figure 6.8a, both the turbulence in the mean wind and that generated by the bridge itself
slowly brings salt into the recirculation regions. Over and under the leeward side of the
bridge deck, the salt moves into the boundary layer and builds up there to high
concentrations. There is a second separation from the top of the leeward parapet and from
the bottom of the last deck unit, leading to low salt concentrations downwind. The turbulence
brings very little salt back onto the back of the downwind parapet.

Figure 6.8b shows the volume fraction of salt when aerosols were released between 1.2 and
2.4 metres of mid-height. There is very little difference between this and the top figure
because turbulence upstream of the bridge has diffused the salt. There is less deposition on
the upwind side of the parapet. More salt is trapped in the recirculation region over the front
of the bridge deck. There is less salt deposition on the underside of the bridge deck.

Figure 6.8c shows the sum of the top two figures plus salt released further from mid-height.
Salt concentrations in the air are seen to be lowest between the leading parapet and the first
barrier, downwind of the superstructure, under the front of the bridge deck and under the
front parapet. Salt concentrations in the air are seen to be highest above the downwind end
of the deck, behind the barrier above the deck, and under the downwind end of the deck.
High salt concentrations in the air do not necessarily correspond to high deposition rates.

 88

Figure 6.8 Volume fraction of salt around the superstructure of the Stewart Road overpass; a) particles released
within 1.4 m of the mid-height, b) particles released between 1.4m and 2.8m of mid-height, c) all salt
aerosol particles. Flow is from left to right. Red is a high concentration of salt, blue is low
concentration.

a)

b)

c)

Figure 6.9 shows the locations of the zones used in analysing the deposition on the
superstructure of the Stewart Road Overpass. This is referred to in the subsequent graphs of
salt deposition and in Table 6.1.

Figure 6.9 Locations of the zones for the superstructure of the Stewart Road overpass

 89

Figure 6.10 shows the salt deposition on the Stewart Road Overpass, measured relative to
the salt candle deposition of 38.9 mg m-2 day-1 at the same location. The line marked “top”
includes Zones 1 and 8, i.e. the top of the bridge deck, the inside of the parapets and both
sides of the barrier. The deposition is highest in three places: on the inside face of the
downwind parapet, on the upwind side of the median strip, and on the upwind side of the
barrier. The deposition on the top of the bridge deck reaches a maximum of about 0.95 DSC
ten metres upwind of the centre of the median strip. It is thus well upwind of the bridge
centre; the high salt intensity in the air above the downwind end of the bridge deck (Figure
6.9a) does not lead to high deposition rates there.

The line marked “under” includes Zone 2, i.e. the underside of the bridge deck units. The
greatest salt deposition is near the front edge of the upwind deck unit. The deposition on the
underside of the deck is comparable in magnitude and position to that on the top of the deck.

Figure 6.10b shows the salt deposition on the upwind face of the upwind parapet and deck
unit, and the downwind face of the downwind parapet and deck unit. That on the downwind
(sheltered) face is about 0.2 DSC for the parapet and less for the deck unit. That on the
upwind (exposed) face is largest near the bottom, larger than average near the top, roughly
1.5 DSC at the bottom of the parapet and smaller in the protected area at the top of the deck
unit.

To summarize the deposition on this superstructure, it is largest on upwind faces including
the upwind face of the median strip, and smallest in the downwind parts of the bridge deck,
particularly on the back of the last deck unit. [No attempt was made to model the gaps
between the deck units; it is expected that the salt deposition there will be very small].

6.2.3 South Johnstone River Bridge

The South Johnstone River Bridge in the Johnstone Shire south of Innisfail is located at
latitude 17°40’ and longitude 146°5’. It is on the Innisfail-Japoon Road. There is ocean to the
East of this bridge.

The bridge has five spans, each about 25 metres long. The superstructure rests on
rectangular prestressed concrete deck units. 17 units are spaced apart for spans 1 and 2 and
support a reinforced concrete deck. 15 units are tied together for spans 3, 4 and 5. The
bridge has a two-bar traffic rail on each side. The computer simulation of deposition is for the
superstructure in spans 3, 4 and 5. This part of the superstructure has an overall width of 9.4
metres and the height including the two bars of the traffic rail is 1.65 metres, giving a height
to width ratio of 1:5.7.

 90

Figure 6.10 Salt deposition on the Stewart Road Overpass measured relative to the salt candle deposition

Stewart Road Overpass Salt Deposition

0

0.5

1

1.5

2

2.5

3

3.5

-20 -15 -10 -5 0 5 10 15
Horizontal distance from highest point of bridge (m)

Sa
lt

D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
Sa

lt
C

an
dl

e

Under
Top

a)

Stewart Road Overpass Salt Deposition

0

0.5

1

1.5

2

2.5

3

3.5

-2 -1.5 -1 -0.5 0 0.5 1
Height (m)

Sa
lt

D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
Sa

lt
C

an
dl

e

Downwind
Upwind

b)

The height in the centre of the bridge deck is assumed to be 10.9 metres above water level
in the computer simulations of salt deposition. This is consistent with the height of the centre
span.

The salt deposition on a salt candle was extracted from our GIS database at the latitude and
longitude given. If this is taken as a “marine” environment then the salt deposition is 10.0 mg
m-2 day-1. For a non-marine environment it is 6.7 mg m-2 day-1. The deposition on the salt
candle for this bridge was also computed.

 91

The results of the salt deposition analysis for the South Johnstone River Bridge are
illustrated in Figure 6.11.

Figure 6.11a shows the volume fraction of salt of aerosols that were released just upstream
of the bridge, within 1.2 metres of the mid-height. The salt is transported first to the leading
side of the deck and much salt is deposited there. A lot of salt is also deposited on the front
sides of the two upwind traffic rails. There is little flow separation from the bottom of the
upwind deck unit, from the top of the deck and behind the traffic rails. The top and the bottom
of the deck are slightly sheltered. The downwind traffic rails are collecting some salt.
Turbulence brings a little salt back onto the downwind end of the deck.

There are clear differences between the top and middle figures. Figure 6.11b shows the
volume fraction of salt when aerosols were released between 1.2 and 2.4 metres of mid-
height. This salt misses the upwind end of the deck and upwind traffic rails almost
completely, although some is deposited on the downwind half of the deck and on the
downwind traffic rails. Turbulence brings more salt back onto the downwind end of the deck.

Figure 6.11c shows the sum of the top two figures plus salt released further from mid-height.
Salt concentrations in the air are seen to be lowest above the deck, below the leading third of
the deck, behind the traffic rails, and downwind of the bridge. Salt concentrations in the air
are seen to be highest on the upwind side of the deck and in front of and above the upwind
traffic rails.

Figure 6.12 shows the locations of the zones used in analysing the deposition on the
superstructure of the Stewart Road Overpass. This is referred to in the subsequent graphs of
salt deposition and in Table 6.1.

Figure 6.13a shows the salt deposition on superstructure of the South Johnstone River
Bridge, measured relative to the salt candle deposition of 6.7 or 10 mg m-2 day-1 (see above
for details) at the same location. The deposition on the traffic rails is not included in the
figure, the average over all traffic rails is a very high 2.53 DSC. The line marked “top”
includes Zones 1 and 8, i.e. the top of the bridge deck and kerbs. The deposition is fairly
uniform, averaging about 0.9 DSC over the downwind half, with a small spike on the
downwind kerb.

The line marked “under” includes Zone 2, i.e. the underside of the bridge deck units. The
greatest salt deposition is near the front edge of the upwind deck unit this then drops off
rapidly to zero before increasing to a fairly uniform value of about 1.1 DSC.

Figure 6.13b shows the salt deposition on the upwind and downwind sides of the deck. There
is an unimportant discontinuity at height zero at the boundary between the deck unit and the
reinforced concrete above. That on the downwind face is remarkably high, peaking at 1.0
DSC on the deck unit. That on the upwind (exposed) face is largest near the top, going up to
approximately four times the salt candle. At the bottom it climbs to three times. In the middle
it averages something like one times.

 92

Figure 6.11 Volume fraction of salt around the superstructure of the South Johnstone River Bridge; a) particles
released within 1.4 metres of the mid-height, b) particles were released between 1.4 and 2.8 metres of
mid-height, c) all salt aerosol particles.

a)

b)

c)

 93

Figure 6.12 Locations of the zones for the superstructure of South Johnstone River Bridge

Figure 6.13 Salt deposition relative to that on a salt candle for the South Johnstone River Bridge

South Johnstone River Bridge Salt Deposition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-6 -4 -2 0 2 4 6
Horizontal distance from highest point of bridge (m)

S
al

t D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
S

al
t C

an
dl

e

Top
Under

South Johnstone River Bridge Salt Deposition

0

0.5

1

1.5

2

2.5

3

3.5

4

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
Height (m)

S
al

t D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
S

al
t C

an
dl

e

Downwind
Upwind

 94

To summarize the deposition on this superstructure, it is particularly large on the bottom and
top of the upwind face, going up to about four times the salt candle. The average deposition
on the traffic rails is also large, about two and a half times that on a salt candle. The
deposition on the top of the deck is slightly larger than that on the bottom and there is a
remarkably high deposition rate on the downwind side of the deck.

6.2.4 Johnson Creek Bridge

The Johnson Creek Bridge in Mount Isa City is located at latitude 20°40’ and longitude
139°25’. It is on the Barkly Highway between Mt Isa and Camooweal. It is well inland and not
near any ocean. The bridge has three uneven spans, the centre span is the longest at 18
metres long. The superstructure consists of a reinforced concrete deck on rectangular
prestressed concrete deck units. There are 15 deck units, placed with a nominal 25 mm
gaps. The bridge has a two-bar traffic rail on each side. The superstructure has an overall
width of 10 metres and the height including the two bars of the traffic rail is 1.37 metres,
giving a height to width ratio of 1:7.3.

The height in the centre of the bridge deck is assumed to be 5.6 metres above ground level
in the computer simulations of salt deposition.

The salt deposition on a salt candle was extracted from our GIS database at the location of
the bridge at latitude and longitude given. It is 3.8mg.m-2.day-1. The deposition on the salt
candle for this bridge was also computed.

Concentrations of salt in the air for the Johnson Creek Bridge are shown in Figure 6.14.

Figure 6.14a shows the volume fraction of salt of aerosols that were released upstream of
the bridge, within one metre of the mid-height. The salt is transported first to the leading side
of the deck and much salt is deposited there. A lot of salt is also deposited on the front sides
of the two upwind traffic rails. Flow separation from the bottom of the upwind side of the deck
affects deposition on the upwind concrete deck unit. There is a little flow separation from the
bottom of the upwind deck unit, from the top of the deck and behind the traffic rails. The top
and the bottom of the deck are slightly sheltered, but turbulence brings salt back into contact
with the downwind half. The downwind traffic rails are collecting some salt. Turbulence brings
some salt back onto the downwind end of the deck.

Figure 6.14b shows the volume fraction of salt when aerosols were released between one
and two metres of mid-height. There is not much difference between this and Figure 6.14a.
There is less deposition on the upwind side top and bottom of the deck.

Figure 6.14c shows the sum of the top two figures plus salt released further from mid-height.
Salt concentrations in the air are seen to be lowest above the upwind end of the deck, below
the leading end of the deck, behind the traffic rails, and downwind of the bridge. Salt
concentrations in the air are seen to be highest above and below the downwind ends of the
deck.

 95

Figure 6.14 Volume fraction of salt around the superstructure of the Johnson Creek Bridge; a) particles released
within 1.4 m of the mid-height, b) particles released between 1.4m and 2.8m of mid-height, c) all salt
aerosol particles. Flow is from left to right.

a)

b)

c)

Figure 6.15 shows the locations of the zones used in analysing the deposition on the
superstructure of the Stewart Road Overpass. This is referred to in the subsequent graphs of
salt deposition and in the table from Section 3.

Figure 6.15 Location of zones for the superstructure of the Johnson Creek Bridge

 96

Figure 6.16 shows the salt deposition on the superstructure of the Johnson Creek Bridge,
measured relative to the salt candle deposition of 3.8 mg m-2 day-1. The deposition is seen to
be intermediate in distribution between that on the Stewart Road Overpass (in which
deposition drops to near zero at the downwind end of the deck) and on the South Johnstone
River Bridge (where the deposition is nearly constant. This is because the height to width
ratio of the Johnson Creek Bridge deck is 1:7.3, which is between those of the other two
bridges (1:13.3 and 1:5.7).

The line marked “top” includes Zones 1 and 8, i.e. the top of the bridge deck and kerbs. The
deposition decays from a maximum of 0.6 DSC to a minimum of about 0.2 DSC, with a large
spike on the downwind kerb.

The line marked “under” includes Zone 2, i.e. the underside of the bridge deck units. The
greatest salt deposition is near the front edge of the upwind deck unit this then drops off and
rapidly rises again to a maximum of 1.2 DSC before reducing slowly to a minimum of about
0.2 DSC.

Figure 6.16b shows the salt deposition on the upwind face and deck unit, and the downwind
face and deck unit. The pattern of deposition closely resembles at of the Stewart Road
Overpass, because the geometry is similar. The deposition on the downwind (sheltered) face
is about 0.15 DSC for the parapet and less for the deck unit. That on the upwind (exposed)
face is largest near the top at about 2.8 DSC, larger than average near the bottom at 2.35
DSC, roughly 1.8 DSC at the bottom of the upwind face and smaller in the protected area at
the top of the leading deck unit.

6.2.5 Bridge over Ward River

The bridge over the Ward River in Murweh Shire is located at latitude 26°30’ and longitude
146°15’. It is on the Diamantina Developmental Road between Charleville and Quilpie.

The bridge has six spans, each about 13.6 metres long. The superstructure consists of a
reinforced concrete deck on two steel I-beams. It has a total width of 4.27 metres and the
height including girders is 1.05 metres, giving a height to width ratio of 1:4.1.

The salt deposition on a salt candle was extracted from our GIS database at the latitude and
longitude given. It is 3.9 mg.m-2.day-1. The deposition on the salt candle for this bridge was
also computed.

Concentrations of salt in the air for the bridge over the Ward River are shown in Figure 6.17.
The distribution of salt in the air is remarkably symmetric; it is not immediately obvious that
the wind from is from left to right. As on the other bridges, there is a reasonable amount of
deposition on the upwind face and flow separation above and below, but this time the salt
deposition on the bottom of the front of the leading girder is not very large.

 97

Figure 6.16 Salt deposition relative to that on a salt candle for the Johnson Creek Bridge

Johnson Creek Bridge Salt Deposition

0

0.5

1

1.5

2

2.5

3

-6 -4 -2 0 2 4 6
Horizontal distance from highest point of bridge (m)

S
al

t D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
S

al
t C

an
dl

e

Top
Under

Johnson Creek Bridge Salt Deposition

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
Height (m)

S
al

t D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
S

al
t C

an
dl

e

Downwind
Upwind

 98

Figure 6.17 Distribution of salt for the Ward River Bridge

There is a big recirculation zone between the girders and salt hangs around in the low
velocity regions behind both girders. The superstructure height to width ratio is large enough
(1:4.1) to bring large amounts of salt into the area downwind of the bridge. The region above
the deck behaves as expected, salt is brought down to the road surface by turbulence.

Figure 6.18 shows the locations of the zones used in analysing the deposition on the
superstructure of the Stewart Road Overpass. This is referred to Table 6.1.

Figure 6.18 Locations of zones for the Ward River Bridge

 99

Figure 6.19 shows the salt deposition on the deck, kerbs and the top flanges of the steel
girders of the bridge over the Ward River, measured relative to the salt candle deposition of
3.9 mg m-2 day-1. As for the the South Johnson River Bridge, the salt deposition on the top of
the deck is fairly uniform, but larger here at about 1.3 DSC for much of the deck. The salt
deposition under the deck is not too different from that above, it is sheltered near where the
girders intersect the deck, but not midway between the girders or further downwind.

Figure 6.19 Salt deposition relative to that on salt candle for the deck of the Ward River Bridge

Deck, Bridge over W ard River Salt Deposition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Horizontal distance from highest point of bridge (m)

Sa
lt

D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
Sa

lt
C

an
dl

e

Top
Under

Deck, Bridge over W ard River Salt Deposition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
Height (m)

Sa
lt

D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
Sa

lt
C

an
dl

e

Downwind
Upwind

 100

As before, the salt deposition on the upwind face of the deck is largest at the top and bottom,
with peak values of about 1.9 DSC and reducing to about 1.0 DSC at mid height. The salt
deposition on the downwind face of the deck is remarkably large, ranging from an average of
about 0.5 DSC over the upper half to a maximum of about 1.5 DSC at the lower edge.

Figure 6.20 shows the salt deposition on the webs and lower flanges of the steel girders of
the bridge over the Ward River, measured relative to the salt candle deposition. The bottom
of the flange of the downwind girder has the largest salt deposition of the whole bridge, rising
to about a peak of about 2.9 DSC. This is the reattachment zone for the recirculation region
separating from the upwind girder, and has a high local turbulence that aids deposition. The
top of this flange, by way of contrast, has a low deposition rate.

Figure 6.20 Salt deposition relative to that on salt candle for the girders of the Ward River Bridge

Girder Flanges, Bridge over W ard River Salt Deposition

0

0.5

1

1.5

2

2.5

3

-1.5 -1 -0.5 0 0.5 1 1.5
Horizontal distance from highest point of bridge (m)

S
al

t D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
S

al
t C

an
dl

e

Top of Flanges
Bottom of Flanges

Girders, Bridge over W ard River Salt Deposition

0

0.2

0.4

0.6

0.8

1

1.2

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
Height (m)

S
al

t D
ep

os
ito

n
di

vi
de

d
by

D
ep

os
iti

on
 o

n
S

al
t C

an
dl

e

Front of Upwind Girder
Back of Upwind Girder
Front of Downwind Girder
Back of Downwind Girder

 101

The leading edge of the top of the flange of the upwind girder has a high deposition rate,
peaking at about 1.7 DSC. This is expected as it catches the salt coming off the front of the
bridge.

For the webs of the girders, the front of the upwind girder has the largest salt deposition rate
and the back of that girder has the smallest. None have a particularly large deposition rate,
with only one point above 1.0 DSC.

6.3 Program and User Interface

The information derived from the analysis of the five bridges was amalgamated to give a
generic bridge structure with nine different zones as shown in Figure 6.1. Salt factors were
derived for each zone to modify the salt deposition levels. A GUI has been designed and
implemented incorporating the GIS of Queensland such that clicking on a point on the map
will get the salt deposition for that point. (Figure 6.21) One of the nine bridge zones can then
be selected and the expected salt deposition on that zone will be calculated from the GIS
figure and the salt factor for the zone.

Figure 6.21 Initial Screen in Bridge program allowing selection of point in Queensland

Two examples of the bridge zones being selected in the GUI are illustrated in Figure 6.22.
(The zoom facility in the GIS map is also illustrated).

 102

Figure 6.22 Two frames of the GUI showing different bridge zones selected

6.4 Utility of Present Results

These results represent the first step towards developing a CBR program for life prediction of
metallic bridge elements. Cases for two typical bridge types have been derived from CFD
modelling of salt deposition. The salt values provided by the program have not been verified
against actual deposition on the bridges (there was no provision for verification in the project
program).

 103

7. SITE VISIT

As part of this project a trip was undertaken to look at corrosion concerns of the industrial
partners in the context of the software tools being developed. David Paterson and Wayne
Ganther from CSIRO travelled to the Sunshine Coast with Alan Carse of Queensland
Department of Main Roads and Michael Ball of Queensland Department of Public Works.
They were joined for part of the visits by Ed Bowers of QBuild which is the commercial unit of
Public Works responsible for maintenance of the buildings and infrastructure supported by
the department. The Sunshine Coast area was chosen for the visit due its coastal location
and known corrosion problems.

A detailed summary of the visit is given in two reports prepared by Wayne Ganther:

• Trip to Sunshine Coast Queensland, September 2004, Visit to Schools, Report No
2002-059-B No 7, and,

• Trip to Sunshine Coast Queensland, September 2004, Visit to Bridge and Foreshore,
Report No 2002-059-B No 8.

7.1 Visit to Schools

Four schools were visited on the Sunshine Coast in the area shown by the maps in Figure
7.1.
Figure 7.1 Maps showing the location of the schools visited

The four schools were:

• Currimundi State School, located within a couple of hundred metres of Dicky Beach,
The school opened in 1977 and the buildings are between 4 and 12 years old,

 104

• Currimundi Special School, located across the road from the State School. The
school was opened in 1984.

• Talara Primary College, located approximately 2 kilometres from the coast (Dicky
Beach) almost directly west of the Currimundi schools. The school was opened in
1998 and Block E was only opened in 2004. and

• Kawana Waters State High School, located approximately 1 kilometre from the coast
and approximately 4 kilometres north of Currimundi. The school was opened in 1986.

All of the schools have significant corrosion problems. Most of the corrosion issues relate to
sheltered corrosion and have been seen in similar structures in Victoria. The main structures
affected are covered walkways and shelters ie. all areas where salt can be deposited and is
not washed away by rainfall. Another problem is roof fasteners which have corroded; this
may be due to inappropriate specifications as some fasteners were stainless steel and
performing well. Other corrosion problems are due to inappropriate design, specifications or
building practice. Some of the problems identified are illustrated in Figure 7.2 to Figure 7.9.

Figure 7.2 Rusting and deterioration at joins of gutters at Currimundi State School

Figure 7.3 Roof fasteners showing evidence of rust at Currimundi State School

 105

Figure 7.4 Contact between stainless steel strapping and Colorbond® roof is causing deterioration of
Colorbond®. Strapping not in contact is showing considerable corrosion (Currimundi Special School)

Figure 7.5 Triple grips and bolts on covered setdown showing evidence of red rust at Currimundi Special School

Figure 7.6 Fasteners in sheeting under porch of Administration block at Talara Primary College

 106

Figure 7.7 Degradation of gutter at join to drainpipe at Talara Primary College. Pop rivets have corroded away.

Figure 7.8 Underside of aluminium roof sheeting of covered walkway at Kawana Waters State High School

Figure 7.9 Heavily corroded fastener in walkway at Kawana Waters State High School

 107

7.2 Bridge and Foreshore Visit

The project group also visited a bridge on the David Low Way (Figure 7.10) at Sunrise Beach
near Noosa. This bridge was in a severe marine environment (Figure 7.11) with high salt
content in the concrete and corrosion of the galvanised handrails and barriers.

Figure 7.10 Bridge on the David Low Way

Figure 7.11 View from the bridge showing proximity to the beach

Some of the corrosion problems identified on the bridge structure are illustrated in Figure
7.12 and Figure 7.13.

 108

Figure 7.12 Corrosion on support beam of bridge

Figure 7.13 White corrosion product on bridge railing

An area on the foreshore near Noosa was also visited to have a look at how severe the coast
was in terms of corrosion. Structures along the coast were inspected to see how they were
fairing in the environment. It was found that some, if not most, of the infrastructure installed
along the coast was incorrectly specified. Some of the components used were not suitable
for the severity of the environment eg. the supports for the shade umbrellas were painted
steel which was severely corroded after a short exposure (Figure 7.14). Where more
resistant metals were specified they were not fully specified. The stainless steel handrails
and plaques were a case in point where the level of finish would seem to be not correctly
specified. The stainless steel had excessive "tea staining" (Figure 7.15) which would have
been avoided if electropolishing had been specified.

 109

Figure 7.14 Umbrella supports showing severe corrosion

Figure 7.15 Plaque showing "tea staining" from corrosion

 110

8. FUTURE DIRECTIONS

This project has scoped out the applicability of a case-based reasoning paradigm for a
software tool for lifetime prediction of metallic building components. Two applications have
been developed, one more advanced than the other. In the application for QDPW, the focus
was gutters in Queensland schools. A CBR engine has been designed and parts of it have
been implemented in conjunction with the development of relevant databases of component
life. The CSIRO holistic model has been modified to include the materials of relevance to
gutters, including Colorbond®. In the application for QDMR the focus was metallic elements
of bridges in Queensland. This required analysis of bridge structures to define structural
elements in common that would be used as cases in a case-based situation and has been
used to predict salinity levels for these cases.

8.1 CBR Engine

These software applications require further development to generate a commercially usable
product. The design of the CBR engine is such as to allow the development of a
comprehensive tool that can span a wide range of materials and a variety of environments,
covering buildings, constructed facilities and infrastructure. The current tools have been
developed as proof of concept with a very limited field of application.

Some modification of the case-based reasoning program will also be necessary to fully
implement an inference engine and optimise the selection of cases and construct the final
case input values from the alternatives retrieved from the databases. At present, the CBR
can interrogate the various databases and select cases considered to be relevant to a given
situation. There is no process for selecting which of the retrieved information should be
stored as a new case.

8.2 Building Applications

The QDPW application could be extended into consideration of the whole building façade
including roofs, gutters, drainpipes, windows and other metallic components. Air conditioning
components also constitute an area where significant corrosion is an issue for facility
managers and inclusion of this could provide benefits. As was done for gutters, cleaning
models would need to be developed for different components, utilising CFD and water flow
analysis, to facilitate modification of the salt deposition levels in the holistic model.

One important aspect in any program extension would be to ensure that nomenclature of
components was consistent with other areas of design and Life Cycle Analysis so that the
final tool could provide input to these processes. LCA workers use the definitions in the
Australian Cost Management Manual.

These tools are dependent on the integrity of the data in the various databases. Information
based on maintenance is of high importance in that it gives real data on the lifetime of
components in actual situations. (In contrast to expert’s opinions in the Delphi survey or
results from modelling) A limited amount of data was received from QDPW and entered into
a “Maintenance” database. It would be very useful to have some means of updating this
database to reflect the knowledge accumulation as maintenance proceeds. As the system is
currently designed, only the casebase is capable of being updated with new cases, derived
from the databases already included, and there is no interface for ongoing input of new
maintenance data. To increase the utility of the programs then methods need to be found for
ongoing updating of, particularly, the maintenance database.

 111

8.3 Bridge Application

The work done to date has not linked the bridge information into the CBR engine. Initial
analysis has been carried out to identify the structural elements for cases and the current
environmental setting can be extended lifetime prediction and risk assessment, with the
development of relevant databases and incorporation into the CBR engine. Two other areas
of interest to QDMR are below ground corrosion modelling and the extension of the program
to include other materials, in particular concrete.

The lifetime prediction tool for bridges will be developed by forming databases of
maintenance information and the model data from the CFD analysis. Parameters relevant to
below-ground metal corrosion will be identified and the model adapted accordingly. For
extension to concrete, the existing CSIRO and international work on modelling concrete
degradation will be reviewed to determine the most appropriate algorithms.

 112

9. REFERENCES

Baghni, I.M., Lyon, S.B., Ding, B., 2004. The effect of strontium and chromate ions on the
inhibition of zinc. Surface & Coatings Technology, 185, 194-198.

Bauer, D.R., 2000. Global exposure models for automotive coating photo-oxidation.
Polymer Degradation and Stability, 69, 297-306.

Bauer, D.R., 2000. Interpreting weathering acceleration factors for automotive coatings
using exposure models. Polymer Degradation and Stability, 69, 307-316.

Bluescope Steel, 2005. Colorbond steel data sheet: Exterior roofing and walling.
www.bluescope.com.au.

Boothroyd,G. 1994, Product design for manufacture and assembly, Computer-Aided Design,
26(7), 505-519.

Cole, I.S. “Recent Progress in Modelling Atmospheric Corrosion”, Corrosion Reviews,
Volume 20, Nos. 4-5, 2002, Editor M. Schorr.

Cole, I.S., Lau, D. and Paterson, D.A, 2004, Holistic model for atmospheric corrosion – Part
6- From wet aerosol to salt deposit. Corros End Sci Techn 39(3): 209-218.

Cole, I.S. and Paterson, D.A., 2004, Holistic model for atmospheric corrosion – Part 5 –
Factors controlling deposition of salt aerosol on candles, plates and buildings. Corros Eng
Sci Techn ,39(2): 125-130.

Cole, I.S., Chan, W.Y., Trinidad, G.S. and Paterson, D.A., 2004, Holistic model for
atmospheric corrosion - Part 4- Geographic iInformation system for predicting airborne
salinity. Corros Eng Sci Techn 39(1): 89-96.

Cole, I.S., Paterson, D.A., Ganther, W.D., Neufeld, A., Hinton, B., McAdam, G., McGeachie,
M., Jeffery, R., Chotimongkol, L., Bhamornsut, C., Hue, NV. and Purwadaria, S.,.2003,
Holistic model for atmospheric corrosion - Part 3 - Effect of natural and man-made landforms
on deposition of marine salts in Australia and south-east Asia. Corros Eng Sci Techn 38(4)
267-274.

Cole, I.S., Ganther, W.G., Paterson, D.A., King, G.A., Furman, S.A. and Lau, D., 2003,
Holistic model for atmospheric corrosion - Part 2 - Experimental measurement of deposition
of marine salts in a number of long range studies. Corros Eng Sci Techn 38(4) 259-266.

Cole, I.S., Paterson, D.A. and Ganther, W.D., 2003, Holistic model for atmospheric corrosion
- Part 1 Theoretical framework for production, transportation and deposition of marine salts.
, Corros Eng Sci Techn (2) 129-134.

Cole, I.S., Furman, S.A. and Ganther, W.D., 2001, A holistic model of atmospheric corrosion.
Elec Soc S 2001(22) 722-732.

Cole, I., Trinidad, G., Bradbury, A., McFallen, S., Chen, S.-E., MacKee, J., Gilbert, D. and
Shutt, G., 2004, Final Report of Delphi study, CRC Report No 2002-020-B.

Corrosion Mapping System at www.corp.indgalv.com.au

CRC Report 2002-059-B No. 5 “Corrosion Degradation Models for Metallic Building
Components”.

Furman, S.A., Scholes, F.H., Hughes, A.E., Lau, D. 2005. Chromate leaching from inhibited
primers II: modelling of leaching. Submitted to Progress in Organic Coatings.

Ganther, W.D., Cole, I.S., 2002. Building envelope corrosion. Proceedings of Corrosion and
Prevention, Adelaide, November, 2002. Australasian Corrosion Association. Paper 067.

Gero, J.S. 1990, Design prototypes: A knowledge representation schema for design, AI
Magazine, 11(4), 26-36.

 113

Gero, J.S., 1998, Towards a model of designing which includes its situatedness, in H.
Grabowski, S. Rude and G. Green (eds), Universal Design Theory, Shaker Verlag, Aachen,
pp. 47-56.

Gero J.S., 1999, Constructive memory in design thinking, in G. Goldschmidt and W. Porter
(eds), Design Thinking Research Symposium: Design Representation, MIT, Cambridge, pp.
I.29-35.

Gero, J.S. and Kulinski, J., 2000, A situated approach to analogy in designing, in B.-K. Tang,
M. Tan and Y.-C. Wong (eds), CAADRIA2000, CASA, Singapore, pp. 225-234.

Giarratano, J.C. and Riley, G., 1989, Expert systems: Principles and programming, PWS-
KENT, Boston.

Howard, R.L., Zin, I.M., Scantlebury, J.D., Lyon, S.B., 1999. Inhibition of cut edge corrosion
of coil-coated architectural cladding. Progress in Organic Coatings, 37, 83-90.

International Standard Organization 2000, Buildings and Constructed Assets – Service Life
Planning – Part 1: General Principles, ISO 15686-1:2000, ISO, Geneva.

ISO 9223, “Corrosion of Metals and Alloys – Corrosivity of Atmospheres – Classification”,
International Organization for Standardization, Genéve, Switzerland (1992).

King, G.A., Kao, P., Norberg, P., O’Brien, D.J., 2001. Metals and coated metal products in
marine environments. CSIRO Building, Construction and Engineering, Internal report, BCE
Doc. 01-259.

King, G.A., Martin, K. G. and Moresby, J.F. (1982) “A detailed Corrosivity Survey of
Melbourne”, CSIRO, Division of Building, Construction and Engineering. ISBN 0 643 02989
3.

Liew, P.S. and Gero, J.S., 2002a, An implementation model of constructive memory for a
situated design agent, in J.S. Gero and F. Brazier (eds), Agents in Design 2002, Key Centre
of Design Computing and Cognition, University of Sydney, Australia, pp. 257-276.

Liew, P.S. and Gero, J.S., 2002b, A memory system for a situated design agent based on
constructive memory, in A. Eshaq, et al. (eds), CAADRIA2002, Prentice Hall, New York, pp.
199-206.

Liew, P.S. and Gero, J.S., 2004, Constructive memory for situated agents, AIEDAM
(Intelligent Agents in Design), 18(3), 163-198.

Liew, PS and Maher, ML, 2004, Situated Case-Based reasoning as a constructive memory
model of design reasoning, in HS Lee and JW Choi (eds) The Proceedings of CAADRIA
2004, Yonsei University Press,, Seoul, Korea, pp. 199-208.

Maher, M.L., Balachandran, M.B. and Zhang, D.M., 1995, Case-based reasoning in design,
Lawrence Erlbaum Associates, Mahwah, N.J.

Prosek, T., Thierry, D., 2004. A model for the release of chromate from organic coatings.
Progress in Organic Coatings, 49, 209-217.

Rosenman, M.A., Gero, J.S. and Oxman, R.E., 1991, What’s in a case: The use of case
bases, knowledge bases and databases in design, in G.N. Schmitt (ed), CAAD Futures ’91,
ETH, Zurich, pp. 263-277.

Scholes, F.H., Furman, S.A., Hughes, A.E., Nikpour, T., Wright, N., Curtis, P.R., Macrae,
C.M., Intem, S., Hill, A.J., 2005. Chromate leaching from inhibited primers I: characterisation
of leaching. Submitted to Progress in Organic Coatings.

Sinko, J., 2001. Challenges of chromate inhibitor pigments replacement in organic coatings.
Progress in Organic Coatings, 42, 267-282.

Sirivivatnanon, V., ‘Service Life Design for Environmental Loads', Keynote Address,
Proceedings of the First International Conference of Asian Concrete Federation, Vol. 1, page
1-19, Chiang Mai, Thailand, October 28-29, 2004.

 114

Sjöström, C. Service Life Analysis of Organic Coatings on Sheet Metal Façade Claddings.
Thesis, KTH, Royal Institute of Technology, Stockholm, 1990.Suh, N.P., 1990, The principles
of design, Oxford University Press, New York.

Wang, H., Preusel, F., Kelly, R.G., 2004. Computational modelling of inhibitor release and
transport from multifunctional organic coatings. Electrochimica Acta, 49, 239-255.

Witten I.H. and Frank, E., 2000, Data mining: Practical machine learning tools and
techniques with Java implementations, Morgan Kaufmann, San Francisco, Calif.

Zin, I.M., Howard, R.L., Badger, S.J., Scantlebury, J.D., Lyon, S.B., 1998. The mode of
action of chromate inhibitor in epoxy primer on galvanised steel. Progress in Organic
Coatings, 33, 203-210.

 115

10. GLOSSARY

 116

11. APPENDICES

Appendix I Example of Delphi Database

An example of the information stored in the Delphi database is given. This is a subset of
information for over 30 building components.

 117

Building
Type

Component Measure Environment Material Maintenance Mode
(years)

SD
(years)

Mean
(Years)

Criteria

Commercial Gutters Service Life Marine Galvanised Steel No 5-10 5 9 2

Commercial Gutters Time to First Maintenance Marine Galvanised Steel Yes <5 4 6 2

Commercial Gutters Aesthetic Life Marine Galvanised Steel Yes 10-15 6 11 2

Commercial Gutters Service Life Industrial Galvanised Steel Yes 10-15 9 15 2

Commercial Gutters Service Life Industrial Galvanised Steel No 5-10 5 10 2

Commercial Gutters Time to First Maintenance Industrial Galvanised Steel Yes 5-10 5 8 2

Commercial Gutters Aesthetic Life Industrial Galvanised Steel Yes 5-10 6 10 2

Commercial Gutters Service Life Benign Galvanised Steel Yes 30-50 16 32 2

Commercial Gutters Time to First Maintenance Benign Galvanised Steel Yes 10-15 15 17 2

Commercial Gutters Aesthetic Life Benign Galvanised Steel Yes 20-30- 13 22 2

Commercial Gutters Service Life Marine Colorbond® No 5-10 12 18 2

Commercial Gutters Time to First Maintenance Marine Colorbond® Yes 5-10 7 10 2

Commercial Gutters Service Life Industrial Colorbond® Yes 15-20 14 26 2

Commercial Gutters Service Life Industrial Colorbond® No 10-15 12 21 2

Commercial Gutters Time to First Maintenance Industrial Colorbond® Yes 5-10 7 12 2

Commercial Gutters Aesthetic Life Industrial Colorbond® Yes 15-20 10 17 2

Commercial Gutters Service Life Benign Colorbond® Yes 30-50 16 36 2

Commercial Gutters Service Life Benign Colorbond® No 30-50 16 35 2

Commercial Gutters Aesthetic Life Benign Colorbond® Yes 30-50 14 29 2

Commercial Gutters Service Life Marine Zincalume No 10-15 11 15 2

Commercial Gutters Time to First Maintenance Marine Zincalume Yes 5-10 8 10 2

Commercial Gutters Service Life Industrial Zincalume Yes 15-20 10 24 2

 118

Appendix II Example of Maintenance Database

An example of the information stored in Maintenance Database is given.

 119

Centre
Code CentreName

Long
Deg

Lat
Deg

<10
km CaseLocation

Dist
From
Case

Case
Long

Case
Lat Material

Service
Life

(years)
No of
Cases

801 Aitkenvale State School 146.76
-

19.29 1 VINCENT 1.0 146.77
-

19.28 GAL/ZINC (UNPAINTED) 33.6 29

801 Aitkenvale State School 146.76
-

19.29 1 VINCENT 1.0 146.77
-

19.28 COLOURBOND 38.0 1

801 Aitkenvale State School 146.76
-

19.29 1 VINCENT 1.0 146.77
-

19.28 GAL/ZINC (PAINTED) 38.8 164

190 Albany Creek State School 152.97
-

27.34 1 ACACIA RIDGE 4.6 153.02
-

27.35 GAL/ZINC (PAINTED) 42.6 8

190 Albany Creek State School 152.97
-

27.34 1 ACACIA RIDGE 4.6 153.02
-

27.35 GAL/ZINC (UNPAINTED) 43.0 1

190 Albany Creek State School 152.97
-

27.34 1 ACACIA RIDGE 4.6 153.02
-

27.35 ALUMINIUM 52.2 29

190 Albany Creek State School 152.97
-

27.34 1 ACACIA RIDGE 4.6 153.02
-

27.35 COLOURBOND 45.0 1

1892 Albany Hills State School 152.97
-

27.35 1 ACACIA RIDGE 4.4 153.02
-

27.35 GAL/ZINC (PAINTED) 42.6 8

1892 Albany Hills State School 152.97
-

27.35 1 ACACIA RIDGE 4.4 153.02
-

27.35 GAL/ZINC (UNPAINTED) 43.0 1

1892 Albany Hills State School 152.97
-

27.35 1 ACACIA RIDGE 4.4 153.02
-

27.35 ALUMINIUM 52.2 29

1892 Albany Hills State School 152.97
-

27.35 1 ACACIA RIDGE 4.4 153.02
-

27.35 COLOURBOND 45.0 1

38 Albert State School 152.7
-

25.54 0 NEWTOWN 0.7 152.70
-

25.53 GAL/ZINC (UNPAINTED) 44.3 6

2017 Aldridge State High School 152.68
-

25.51 0 MARYBOROUGH 3.0 152.70
-

25.53 GAL/ZINC (PAINTED) 53.0 8

2206
Allenstown Special
Education Unit 150.5

-
23.39 0

NORTH
ROCKHAMPTON 1.9 150.52

-
23.38 GAL/ZINC (UNPAINTED) 33.8 46

2206
Allenstown Special
Education Unit 150.5

-
23.39 0

NORTH
ROCKHAMPTON 1.9 150.52

-
23.38 COLOURBOND 27.0 1

 120

2206
Allenstown Special
Education Unit 150.5

-
23.39 0

NORTH
ROCKHAMPTON 1.9 150.52

-
23.38 GAL/ZINC (PAINTED) 41.8 13

155 Allenstown State School 150.5
-

23.39 0
NORTH
ROCKHAMPTON 1.9 150.52

-
23.38 GAL/ZINC (UNPAINTED) 33.8 46

155 Allenstown State School 150.5
-

23.39 0
NORTH
ROCKHAMPTON 1.9 150.52

-
23.38 COLOURBOND 27.0 1

155 Allenstown State School 150.5
-

23.39 0
NORTH
ROCKHAMPTON 1.9 150.52

-
23.38 GAL/ZINC (PAINTED) 41.8 13

 121

Appendix III Computation of distance between two points on the
Earth’s surface

The distance, D, between two points on the surface on the earth is computed by the following
formula:

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −×⎟

⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞

⎜
⎝
⎛×= −

2958.572958.57
cos

2958.57
cos

2958.57
cos

2958.57
sin

2958.57
sincos 1221211 longitudelongitudelatitudelatitudelatitudelatitudeRD

where:

the location of the first point is given by (longitude1, latitude1);
the location of the second point is given by (longitude2, latitude2);
and longitudes and latitudes are measure in decimal degrees;
R is the radius of the earth taken as 6378.7 km.

To convert latitude or longitude from decimal degrees to radians, the latitude and

longitude values are divided by 2956.57180
≈

π
 (taking π to be 3.1416).

 122

Appendix IV Java Classes for CBR code

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeCase

java.lang.Object
 ComponentLifeCase
All Implemented Interfaces:

ComponentLifeSubCase, java.io.Serializable

public class ComponentLifeCase

extends java.lang.Object

implements java.io.Serializable, ComponentLifeSubCase

See Also:
Serialized Form

Constructor Summary

ComponentLifeCase()
 Creates a new instance of ComponentLifeCase

ComponentLifeCase(java.lang.String name,
ComponentLifeTableInput tableInput,
ComponentLifeUserInput initialInputData, java.util.Date timeStamp)
 Creates a new instance of ComponentLifeCase

ComponentLifeCase(java.lang.String id, java.util.Date timeStamp,
ComponentLifeUserInput initialInputData, java.util.Vector alternatives,
ComponentLifeUserInput finalInputData, java.lang.String module,
double value, double similarityIndex,
ComponentLifeTableInput similarityTable)
 Creates a new instance of ComponentLifeCase

Method Summary

 void displayContents(int prefixNumOfTabs)
 Displays the contents of the case.

 java.util.Vector getAlternatives()
 Getter for property alternatives.

 123

 double getDistance()
 Getter for property distance.

 ComponentLifeUserInput getFinalInputData()
 Getter for property finalInputData.

 java.lang.String getId()
 Getter for property id.

 ComponentLifeUserInput getInitialInputData()
 Getter for property initialInputData.

 java.lang.String getModule()
 Getter for property module.

 double getSimilarityIndex()
 Getter for property similarityIndex.

 double getSimilarityIndex(ComponentLifeUserInput input)
 Computes the similarity index between this case and the situation
defined by the input data.

 double getValue()
 Getter for property value.

 void setAlternatives(java.util.Vector alternatives)
 Setter for property alternatives.

 void setDistance(double distance)
 Setter for property distance.

 void setFinalInputData(ComponentLifeUserInput finalInputData)
 Setter for property finalInputData.

 void setId(java.lang.String id)
 Setter for property id.

 void setInitialInputData(ComponentLifeUserInput initialInputData)
 Setter for property initialInputData.

 void setModule(java.lang.String module)
 Setter for property module.

 void setSimilarityIndex(double similarityIndex)
 Setter for property similarityIndex.

 void setValue(double value)
 Setter for property value.

 java.lang.String toString()
 Returns a String representation of the case.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

 124

Constructor Detail
ComponentLifeCase

public ComponentLifeCase()

Creates a new instance of ComponentLifeCase

ComponentLifeCase

public ComponentLifeCase(java.lang.String id,
 java.util.Date timeStamp,
 ComponentLifeUserInput initialInputData,
 java.util.Vector alternatives,
 ComponentLifeUserInput finalInputData,
 java.lang.String module,
 double value,
 double similarityIndex,
 ComponentLifeTableInput similarityTable)

Creates a new instance of ComponentLifeCase

ComponentLifeCase

public ComponentLifeCase(java.lang.String name,
 ComponentLifeTableInput tableInput,
 ComponentLifeUserInput initialInputData,
 java.util.Date timeStamp)

Creates a new instance of ComponentLifeCase

Method Detail
getSimilarityIndex

public double getSimilarityIndex(ComponentLifeUserInput input)

Computes the similarity index between this case and the situation defined by the
input data.

toString

public java.lang.String toString()

Returns a String representation of the case.

Specified by:
toString in interface ComponentLifeSubCase

getInitialInputData

public ComponentLifeUserInput getInitialInputData()

Getter for property initialInputData.

 125

Returns:
Value of property initialInputData.

setInitialInputData

public void setInitialInputData(ComponentLifeUserInput initialInputData)

Setter for property initialInputData.

Parameters:
initialInputData - New value of property initialInputData.

getModule

public java.lang.String getModule()

Getter for property module.

Returns:
Value of property module.

setModule

public void setModule(java.lang.String module)

Setter for property module.

Parameters:
module - New value of property module.

getId

public java.lang.String getId()

Getter for property id.

Returns:
Value of property id.

setId

public void setId(java.lang.String id)

Setter for property id.

Parameters:
id - New value of property id.

getValue

public double getValue()

Getter for property value.

Returns:

 126

Value of property value.

setValue

public void setValue(double value)

Setter for property value.

Parameters:
value - New value of property value.

getFinalInputData

public ComponentLifeUserInput getFinalInputData()

Getter for property finalInputData.

Returns:
Value of property finalInputData.

setFinalInputData

public void setFinalInputData(ComponentLifeUserInput finalInputData)

Setter for property finalInputData.

Parameters:
finalInputData - New value of property finalInputData.

getAlternatives

public java.util.Vector getAlternatives()

Getter for property alternatives.

Returns:
Value of property alternatives.

setAlternatives

public void setAlternatives(java.util.Vector alternatives)

Setter for property alternatives.

Parameters:
alternatives - New value of property alternatives.

getSimilarityIndex

public double getSimilarityIndex()

Getter for property similarityIndex.

Returns:
Value of property similarityIndex.

 127

setSimilarityIndex

public void setSimilarityIndex(double similarityIndex)

Setter for property similarityIndex.

Parameters:
similarityIndex - New value of property similarityIndex.

getDistance

public double getDistance()

Getter for property distance.

Returns:
Value of property distance.

setDistance

public void setDistance(double distance)

Setter for property distance.

Parameters:
distance - New value of property distance.

displayContents

public void displayContents(int prefixNumOfTabs)

Displays the contents of the case.

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 128

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeCaseBase

java.lang.Object
 ComponentLifeCaseBase
All Implemented Interfaces:

ComponentLifeDataSource, java.io.Serializable

public class ComponentLifeCaseBase

extends java.lang.Object

implements java.io.Serializable, ComponentLifeDataSource

This is a wrapper class for the Casebase.

See Also:
Serialized Form

Constructor Summary

ComponentLifeCaseBase()
 Creates a new instance of ComponentLifeCaseBase

Method Summary

 void addCase(ComponentLifeCase icase)
 Adds a new case to the casebase.

 void displayContents(int prefixNumOfTabs)
 Displays the contents of the casebase.

 java.util.Vector getAlternatives(ComponentLifeUserInput input,
java.util.Date timeStamp, java.lang.String id)
 Get alternatives from the casebase for interpretation and
construction.

 java.util.Vector getAlternativesAsStrings(ComponentLifeUserInput userInput)
 Returns the String representations of all alternative cases as a
collection.

 ComponentLifeCase getCase(int index)
 Gets a case from the casebase according to an index.

 129

 ComponentLifeCase getCase(java.lang.String caseID)
 Gets a case based on its identifier.

 java.util.Vector getSimilarCases(ComponentLifeUserInput userInput)

 ComponentLifeTableInput getSimilarityTable()
 Getter for property similarityTable.

 int getSize()

 void setSimilarityTable(ComponentLifeTableInput similarityTable)
 Setter for property similarityTable.

 java.lang.String toString()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Constructor Detail
ComponentLifeCaseBase

public ComponentLifeCaseBase()

Creates a new instance of ComponentLifeCaseBase

Method Detail
addCase

public void addCase(ComponentLifeCase icase)

Adds a new case to the casebase.

getCase

public ComponentLifeCase getCase(int index)

Gets a case from the casebase according to an index.

getSize

public int getSize()

 130

toString

public java.lang.String toString()

getSimilarityTable

public ComponentLifeTableInput getSimilarityTable()

Getter for property similarityTable.

Returns:
Value of property similarityTable.

setSimilarityTable

public void setSimilarityTable(ComponentLifeTableInput similarityTable)

Setter for property similarityTable.

Parameters:
similarityTable - New value of property similarityTable.

getSimilarCases

public java.util.Vector getSimilarCases(ComponentLifeUserInput userInput)

getAlternatives

public java.util.Vector getAlternatives(ComponentLifeUserInput input,
 java.util.Date timeStamp,
 java.lang.String id)

Get alternatives from the casebase for interpretation and construction. The current
way to get alternatives is to compute the similarity index of all cases within the
casebase and select those with similarity value greater than the thresold.

Specified by:
getAlternatives in interface ComponentLifeDataSource

getAlternativesAsStrings

public java.util.Vector
getAlternativesAsStrings(ComponentLifeUserInput userInput)

Returns the String representations of all alternative cases as a collection.

getCase

public ComponentLifeCase getCase(java.lang.String caseID)

Gets a case based on its identifier.

 131

displayContents

public void displayContents(int prefixNumOfTabs)

Displays the contents of the casebase.

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 132

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeConsoleDisplay

java.lang.Object
 ComponentLifeConsoleDisplay

public class ComponentLifeConsoleDisplay

extends java.lang.Object

A placeholder to display results for throws situatedCBR systems in the screen console until a
graphical user interface is developed.

Constructor Summary

ComponentLifeConsoleDisplay()
 Creates a new instance of ComponentLifeConsoleDisplay

Method Summary

 void displayComponentLifeClass(java.lang.String str,
int prefixNumOfTabs)
 Display the String representations of objects in the system after
prefixing each new line with a specified number of "tab" characters.

 java.lang.String getConsoleDisplayString(java.lang.String str,
int prefixNumOfTabs)
 Prefix a specified number of "tab" characters to the String
representations of objects in the system.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

 133

Constructor Detail
ComponentLifeConsoleDisplay

public ComponentLifeConsoleDisplay()

Creates a new instance of ComponentLifeConsoleDisplay

Method Detail
displayComponentLifeClass

public void displayComponentLifeClass(java.lang.String str,
 int prefixNumOfTabs)

Display the String representations of objects in the system after prefixing each new
line with a specified number of "tab" characters.

getConsoleDisplayString

public java.lang.String getConsoleDisplayString(java.lang.String str,
 int prefixNumOfTabs)

Prefix a specified number of "tab" characters to the String representations of objects
in the system.

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 134

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeConstructor

java.lang.Object
 ComponentLifeConstructor

public class ComponentLifeConstructor
extends java.lang.Object

Performs the constructive functions as dictated by the situated CBR model. A new case is
created by this construction.

Constructor Summary

ComponentLifeConstructor()
 Creates a new instance of ComponentLifeConstructor

Method Summary

 void activateInferenceEngine(ComponentLifeUserInput userInput,
java.util.Vector alternatives, ComponentLifeCase theCase)
 Provides an entry point to an external inference engine to
attached to the situated CBR system for constructing a new case
according to a set of alternatives obtained from the casebase, holistic
model, delphi database and field database based on domain
heuristics.

 void constructCase(java.util.Vector dataSources,
ComponentLifeUserInput userInput,
java.lang.String idPrefix, java.util.Date timeStamp,
ComponentLifeCase theCase)
 Construct a new case through the use of domain heuristics
operating on the set of alternatives obtained from the casebase,
holistic model, delphi database and field database.

 void displayAlternatives(java.util.Vector alternatives)
 Display the alternatives from the casebase, holistic model,
delphi database and field database (represented as a Vector of
Vectors) as a String oblect with one "tab" characters as prefix.

 java.util.Vector getAlternatives(java.util.Vector dataSources,
ComponentLifeUserInput userInput,
java.lang.String idPrefix, java.util.Date timeStamp)

 135

 Returns a Vector of Vectors object that represents the
alternatives from the casebase, holistic model, delphi database and
field database based on the user input parameter values.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail
ComponentLifeConstructor

public ComponentLifeConstructor()

Creates a new instance of ComponentLifeConstructor

Method Detail
constructCase

public void constructCase(java.util.Vector dataSources,
 ComponentLifeUserInput userInput,
 java.lang.String idPrefix,
 java.util.Date timeStamp,
 ComponentLifeCase theCase)

Construct a new case through the use of domain heuristics operating on the set of
alternatives obtained from the casebase, holistic model, delphi database and field
database.

getAlternatives

public java.util.Vector getAlternatives(java.util.Vector dataSources,
 ComponentLifeUserInput userInput,
 java.lang.String idPrefix,
 java.util.Date timeStamp)

Returns a Vector of Vectors object that represents the alternatives from the
casebase, holistic model, delphi database and field database based on the user input
parameter values.

Each sub-Vector object represents alternatives from either the casebase, holistic
model, delphi database or field database.

displayAlternatives

 136

public void displayAlternatives(java.util.Vector alternatives)
Display the alternatives from the casebase, holistic model, delphi database and field
database (represented as a Vector of Vectors) as a String oblect with one "tab"
characters as prefix.

activateInferenceEngine

public void activateInferenceEngine(ComponentLifeUserInput userInput,
 java.util.Vector alternatives,
 ComponentLifeCase theCase)

Provides an entry point to an external inference engine to attached to the situated
CBR system for constructing a new case according to a set of alternatives obtained
from the casebase, holistic model, delphi database and field database based on
domain heuristics.

No inference engine is used in the current version of the system. The alternatives are
displayed and the method to compute value is set to a string "PLACEHOLDER". The
computed value is set to 100.. The vector of vector representing the alternatives is not
used.

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 137

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Interface ComponentLifeDataSource
All Known Implementing Classes:

ComponentLifeCaseBase, ComponentLifeDelphiDatabase,
ComponentLifeFieldDatabase, ComponentLifeHolisticModel

public interface ComponentLifeDataSource

An interface that all data sources must conform to. Currently these sources are:
ComponentLifeCaseBase, ComponentLifeHolisticModel, ComponentLifeDelphiDatabase,
ComponentLifeFieldDatabase.

Method Summary

 java.util.Vector getAlternatives(ComponentLifeUserInput input,
java.util.Date timeStamp, java.lang.String id)

Method Detail
getAlternatives

public java.util.Vector getAlternatives(ComponentLifeUserInput input,
 java.util.Date timeStamp,
 java.lang.String id)

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 138

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeDelphiDatabase

java.lang.Object
 ComponentLifeDelphiDatabase
All Implemented Interfaces:

ComponentLifeDataSource

public class ComponentLifeDelphiDatabase

extends java.lang.Object

implements ComponentLifeDataSource

This is a wrapper class for the Delphi Database.

Constructor Summary

ComponentLifeDelphiDatabase()
 Creates a new instance of ComponentLifeDelphiDatabase

Method Summary

 java.util.Vector getAlternatives(ComponentLifeUserInput input,
java.util.Date timeStamp, java.lang.String id)
 Get alternatives from the Holistic model for interpretation and
construction.

 double getLifeSurvey(java.lang.String compType,
java.lang.String material,
ComponentLifeGeoLocation geoLoc)
 Gets predicted component life value.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

 139

Constructor Detail
ComponentLifeDelphiDatabase

public ComponentLifeDelphiDatabase()

Creates a new instance of ComponentLifeDelphiDatabase

Method Detail
getLifeSurvey

public double getLifeSurvey(java.lang.String compType,
 java.lang.String material,
 ComponentLifeGeoLocation geoLoc)

Gets predicted component life value.

getAlternatives

public java.util.Vector getAlternatives(ComponentLifeUserInput input,
 java.util.Date timeStamp,
 java.lang.String id)

Get alternatives from the Holistic model for interpretation and construction. The
current way to get alternatives is based on using different materials and these
alternatives are returned as objects of ComponentLifeHolisticSubCase. The original
input is also used to generate an alternative.

Specified by:
getAlternatives in interface ComponentLifeDataSource

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 140

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeDelphiSubCase

java.lang.Object
 ComponentLifeDelphiSubCase
All Implemented Interfaces:

ComponentLifeSubCase, java.io.Serializable

public class ComponentLifeDelphiSubCase

extends java.lang.Object

implements java.io.Serializable, ComponentLifeSubCase

This class represents an alternative from the Delphi Database that the system can used during
interpretation or construction.

See Also:
Serialized Form

Constructor Summary

ComponentLifeDelphiSubCase(java.lang.String id, java.util.Date timeStamp,
ComponentLifeUserInput userInput)
 Creates a new instance of ComponentLifeDelphiSubCase

Method Summary

 java.lang.String toString()
 Return a String representation of the object

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

 141

Constructor Detail
ComponentLifeDelphiSubCase

public ComponentLifeDelphiSubCase(java.lang.String id,
 java.util.Date timeStamp,
 ComponentLifeUserInput userInput)

Creates a new instance of ComponentLifeDelphiSubCase

Method Detail
toString

public java.lang.String toString()

Return a String representation of the object

Specified by:
toString in interface ComponentLifeSubCase

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 142

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeFieldDatabase

java.lang.Object
 ComponentLifeFieldDatabase
All Implemented Interfaces:

ComponentLifeDataSource

public class ComponentLifeFieldDatabase

extends java.lang.Object

implements ComponentLifeDataSource

This is a wrapper class for the Field (Maintenance) Database.

Constructor Summary

ComponentLifeFieldDatabase()
 Creates a new instance of ComponentLifeFieldDatabase

Method Summary

 java.util.Vector getAlternatives(ComponentLifeUserInput input,
java.util.Date timeStamp, java.lang.String id)
 Get alternatives from the Holistic model for interpretation and
construction.

 double getLifeData(java.lang.String compType,
java.lang.String material,
ComponentLifeGeoLocation geoLoc)
 Gets predicted component life value.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

 143

Constructor Detail
ComponentLifeFieldDatabase

public ComponentLifeFieldDatabase()

Creates a new instance of ComponentLifeFieldDatabase

Method Detail
getLifeData

public double getLifeData(java.lang.String compType,
 java.lang.String material,
 ComponentLifeGeoLocation geoLoc)

Gets predicted component life value.

getAlternatives

public java.util.Vector getAlternatives(ComponentLifeUserInput input,
 java.util.Date timeStamp,
 java.lang.String id)

Get alternatives from the Holistic model for interpretation and construction. The
current way to get alternatives is based on using different materials and these
alternatives are returned as objects of ComponentLifeHolisticSubCase. The original
input is also used to generate an alternative.

Specified by:
getAlternatives in interface ComponentLifeDataSource

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 144

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeFieldSubCase

java.lang.Object
 ComponentLifeFieldSubCase
All Implemented Interfaces:

ComponentLifeSubCase, java.io.Serializable

public class ComponentLifeFieldSubCase

extends java.lang.Object

implements java.io.Serializable, ComponentLifeSubCase

This class represents an alternative from the Field Database that the system can used during
interpretation or construction.

See Also:
Serialized Form

Constructor Summary

ComponentLifeFieldSubCase(java.lang.String id, java.util.Date timeStamp,
ComponentLifeUserInput userInput)
 Creates a new instance of ComponentLifeFieldSubCase

Method Summary

 java.lang.String toString()
 Return a String representation of the object

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

 145

Constructor Detail
ComponentLifeFieldSubCase

public ComponentLifeFieldSubCase(java.lang.String id,
 java.util.Date timeStamp,
 ComponentLifeUserInput userInput)

Creates a new instance of ComponentLifeFieldSubCase

Method Detail
toString

public java.lang.String toString()

Return a String representation of the object

Specified by:
toString in interface ComponentLifeSubCase

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 146

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeGeoLocation

java.lang.Object
 ComponentLifeGeoLocation
All Implemented Interfaces:

java.io.Serializable

public class ComponentLifeGeoLocation

extends java.lang.Object

implements java.io.Serializable

This is a representation of a geographic location.

See Also:
Serialized Form

Constructor Summary

ComponentLifeGeoLocation()
 Creates a new instance of ComponentLifeGeoLocation

ComponentLifeGeoLocation(double locX, double locY)
 Creates a new instance of ComponentLifeGeoLocation with two doubles

Method Summary

 double getDistance(ComponentLifeGeoLocation geoLocation)
 Computes the distance between two geoggraphic locations

 double getLocationX()
 Getter for property locationX.

 double getLocationY()
 Getter for property locationY.

static void main(java.lang.String[] args)
 Unit testing function.

 void setLocationX(double locationX)
 Setter for property locationX.

 147

 void setLocationY(double locationY)
 Setter for property locationY.

 java.lang.String toString()
 Returns a String representation of the object.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Constructor Detail
ComponentLifeGeoLocation

public ComponentLifeGeoLocation()

Creates a new instance of ComponentLifeGeoLocation

ComponentLifeGeoLocation

public ComponentLifeGeoLocation(double locX,
 double locY)

Creates a new instance of ComponentLifeGeoLocation with two doubles

Method Detail
getLocationX

public double getLocationX()

Getter for property locationX.

Returns:
Value of property locationX.

setLocationX

public void setLocationX(double locationX)

Setter for property locationX.

Parameters:
locationX - New value of property locationX.

getLocationY

public double getLocationY()

 148

Getter for property locationY.

Returns:
Value of property locationY.

setLocationY

public void setLocationY(double locationY)

Setter for property locationY.

Parameters:
locationY - New value of property locationY.

getDistance

public double getDistance(ComponentLifeGeoLocation geoLocation)

Computes the distance between two geoggraphic locations

toString

public java.lang.String toString()

Returns a String representation of the object.

main

public static void main(java.lang.String[] args)

Unit testing function.

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 149

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeHolisticModel

java.lang.Object
 ComponentLifeHolisticModel
All Implemented Interfaces:

ComponentLifeDataSource

public class ComponentLifeHolisticModel
extends java.lang.Object

implements ComponentLifeDataSource

This is a wrapper class for the Holistic Model.

Constructor Summary

ComponentLifeHolisticModel()
 Creates a new instance of ComponentLifeHolisticModel

Method Summary

 java.util.Vector getAlternatives(ComponentLifeUserInput input,
java.util.Date timeStamp, java.lang.String id)
 Get alternatives from the Holistic model for interpretation and
construction.

 double getLifeModel(java.lang.String compType,
java.lang.String material,
ComponentLifeGeoLocation geoLoc)
 Gets predicted component life value.

 double getSalt(ComponentLifeGeoLocation geoLoc)
 Gets Salinity value based on location data.

 double getToW(ComponentLifeGeoLocation geoLoc)
 Gets Time-to-Wetness value based on location data.

static void main(java.lang.String[] args)
 Unit testing function.

 150

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail
ComponentLifeHolisticModel

public ComponentLifeHolisticModel()

Creates a new instance of ComponentLifeHolisticModel

Method Detail
getToW

public double getToW(ComponentLifeGeoLocation geoLoc)

Gets Time-to-Wetness value based on location data.

getSalt

public double getSalt(ComponentLifeGeoLocation geoLoc)

Gets Salinity value based on location data.

getLifeModel

public double getLifeModel(java.lang.String compType,
 java.lang.String material,
 ComponentLifeGeoLocation geoLoc)

Gets predicted component life value.

getAlternatives

public java.util.Vector getAlternatives(ComponentLifeUserInput input,
 java.util.Date timeStamp,
 java.lang.String id)

Get alternatives from the Holistic model for interpretation and construction. The
current way to get alternatives is based on using different materials and these
alternatives are returned as objects of ComponentLifeHolisticSubCase. The original
input is also used to generate an alternative.

Specified by:
getAlternatives in interface ComponentLifeDataSource

main

public static void main(java.lang.String[] args)

 151

Unit testing function.

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 152

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeHolisticSubCase

java.lang.Object
 ComponentLifeHolisticSubCase
All Implemented Interfaces:

ComponentLifeSubCase, java.io.Serializable

public class ComponentLifeHolisticSubCase

extends java.lang.Object

implements java.io.Serializable, ComponentLifeSubCase

This class represents an alternative from the Holistic Model that the system can used during
interpretation or construction.

See Also:
Serialized Form

Constructor Summary

ComponentLifeHolisticSubCase(java.lang.String id,
java.util.Date timeStamp, ComponentLifeUserInput userInput)
 Creates a new instance of ComponentLifeHolisticSubCase

Method Summary

 java.lang.String toString()
 Return a String representation of the object

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

 153

Constructor Detail
ComponentLifeHolisticSubCase

public ComponentLifeHolisticSubCase(java.lang.String id,
 java.util.Date timeStamp,
 ComponentLifeUserInput userInput)

Creates a new instance of ComponentLifeHolisticSubCase

Method Detail
toString

public java.lang.String toString()

Return a String representation of the object

Specified by:
toString in interface ComponentLifeSubCase

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 154

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeInterpreter

java.lang.Object
 ComponentLifeInterpreter

public class ComponentLifeInterpreter
extends java.lang.Object

Performs the interpretive functions as dictated by the situated CBR model. User input
paramaters values are finalized by this class during interpretation.

Constructor Summary

ComponentLifeInterpreter()
 Creates a new instance of ComponentLifeInterpreter

Method Summary

 ComponentLifeUserInput activateInferenceEngine(ComponentLifeUserInput userInput,
java.util.Vector alternatives)
 Provides an entry point to an external inference engine to
attached to the situated CBR system for interpreting the current
situation according to a set of alternatives obtained from the
casebase, holistic model, delphi database and field database based
on domain heuristics.

 void displayAlternatives(java.util.Vector alternatives,
int tabSpace)
 Display the alternatives from the casebase, holistic model,
delphi database and field database (represented as a Vector of
Vectors) as a String oblect with a specific number of "tab" characters
as prefix.

 java.util.Vector getAlternatives(java.util.Vector dataSources,
ComponentLifeUserInput userInput,
java.lang.String idPrefix, java.util.Date timeStamp)
 Returns a Vector of Vectors object that represents the
alternatives from the casebase, holistic model, delphi database and
field database based on the user input parameter values.

 java.lang.String getAlternativesStrings(java.util.Vector alternatives)
 Return the alternatives from the casebase, holistic model,

 155

delphi database and field database, represented as a Vector of
Vectors object, as a String object.

 ComponentLifeUserInput getFinalUserInput(java.util.Vector dataSources,
ComponentLifeUserInput userInput,
java.lang.String idPrefix, java.util.Date timeStamp)
 Finalizes the input parameter values as a new
ComponentLifeUserInput object through the use of domain heuristics
operating on the set of alternatives obtained from the casebase,
holistic model, delphi database and field database.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail
ComponentLifeInterpreter

public ComponentLifeInterpreter()

Creates a new instance of ComponentLifeInterpreter

Method Detail
getFinalUserInput

public ComponentLifeUserInput
getFinalUserInput(java.util.Vector dataSources,

ComponentLifeUserInput userInput,
 java.lang.String idPrefix,
 java.util.Date timeStamp)

Finalizes the input parameter values as a new ComponentLifeUserInput object
through the use of domain heuristics operating on the set of alternatives obtained
from the casebase, holistic model, delphi database and field database.

getAlternatives

public java.util.Vector getAlternatives(java.util.Vector dataSources,
 ComponentLifeUserInput userInput,
 java.lang.String idPrefix,
 java.util.Date timeStamp)

Returns a Vector of Vectors object that represents the alternatives from the
casebase, holistic model, delphi database and field database based on the user input
parameter values.

 156

Each sub-Vector object represents alternatives from either the casebase, holistic
model, delphi database or field database.

activateInferenceEngine

public ComponentLifeUserInput
activateInferenceEngine(ComponentLifeUserInput userInput,

java.util.Vector alternatives)

Provides an entry point to an external inference engine to attached to the situated
CBR system for interpreting the current situation according to a set of alternatives
obtained from the casebase, holistic model, delphi database and field database
based on domain heuristics.

No inference engine is used in the current version of the system. The alternatives are
displayed and the input data is duplicated. The vector of vector representing the
alternatives is not used.

displayAlternatives

public void displayAlternatives(java.util.Vector alternatives,
 int tabSpace)

Display the alternatives from the casebase, holistic model, delphi database and field
database (represented as a Vector of Vectors) as a String oblect with a specific
number of "tab" characters as prefix.

getAlternativesStrings

public java.lang.String
getAlternativesStrings(java.util.Vector alternatives)

Return the alternatives from the casebase, holistic model, delphi database and field
database, represented as a Vector of Vectors object, as a String object.

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 157

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeSituatedCBR

java.lang.Object
 ComponentLifeSituatedCBR

public class ComponentLifeSituatedCBR

extends java.lang.Object

This class provides the entry point to the situated CBR system via its main() function. The
following procedures are followed for a typical run of the system:

1) Initialization:

a) casebase file and data file for computing similarity index is located

b) interface to data file for computing similarity index is created

c) casebase is loaded

d) holistic model is loaded

e) delphi database is loaded

f) field database is loaded

g) all casebase, holistic model and databases are collected into a Vector object as data sources

h) new case is created

2) Interpretation:

a) interpreter is created

b) user input is finalized

3) Construction:

a) constructor is created

b) all parameter valuess of the new case is computed

4) Closure

a) new case is saved

 158

b) casebase is closed

Constructor Summary

ComponentLifeSituatedCBR()
 Creates a new instance of ComponentLifeSituatedCBR

Method Summary

static void main(java.lang.String[] args)
 Entry point to functions for system testing.

 void testScenario0()
 Testing codes for Test Scenario 0

 void testScenario1()
 Testing codes for Test Scenario 1

 void testScenario2()
 Testing codes for Test Scenario 2

 void testScenario3()
 Testing codes for Test Scenario 3

 void testScenario4()
 Testing codes for Test Scenario 4

 void testScenario5()
 Testing codes for Test Scenario 5

 void testScenario6()
 Testing codes for Test Scenario 6

 void testScenario7()
 Testing codes for Test Scenario 7

 void testScenario8()
 Testing codes for Test Scenario 8

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

 159

Constructor Detail
ComponentLifeSituatedCBR

public ComponentLifeSituatedCBR()

Creates a new instance of ComponentLifeSituatedCBR

Method Detail
testScenario0

public void testScenario0()

Testing codes for Test Scenario 0

testScenario1

public void testScenario1()

Testing codes for Test Scenario 1

testScenario2

public void testScenario2()

Testing codes for Test Scenario 2

testScenario3

public void testScenario3()

Testing codes for Test Scenario 3

testScenario4

public void testScenario4()

Testing codes for Test Scenario 4

testScenario5

public void testScenario5()

Testing codes for Test Scenario 5

testScenario6

public void testScenario6()

Testing codes for Test Scenario 6

testScenario7

 160

public void testScenario7()

Testing codes for Test Scenario 7

testScenario8

public void testScenario8()

Testing codes for Test Scenario 8

main

public static void main(java.lang.String[] args)

Entry point to functions for system testing. Comment off different function calls to
effect different test scenarios.

Parameters:
args - the command line arguments

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 161

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Interface ComponentLifeSubCase
All Known Implementing Classes:

ComponentLifeCase, ComponentLifeDelphiSubCase, ComponentLifeFieldSubCase,
ComponentLifeHolisticSubCase

public interface ComponentLifeSubCase

An interface that all subcase objects must conform to. Currently these subcases are:
ComponentLifeCase, ComponentLifeHolisticSubCase, ComponentLifeDelphiSubCase,
ComponentLifeFieldSubCase.

Method Summary

 java.lang.String toString()

Method Detail
toString

public java.lang.String toString()

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 162

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeTableInput

java.lang.Object
 ComponentLifeTableInput
All Implemented Interfaces:

java.io.Serializable

public class ComponentLifeTableInput
extends java.lang.Object

implements java.io.Serializable

This class provides an interface to the codes that read in the data required for computing the
similarity index between the situations defined by a case and the user input. Currently the data
resides within the file: userInputCFG.txt.

Expansion Possibilities:

1) The tabulated within the data file (userInputCFG.txt) can be changed to provide better
coorelations between different situations when computing the similarity based on: a)
maintanence factor; b)cleaning factor with condition gunk can collect or cleaning factor with
gunk cannot collect; c)location-in-building factor; and d) geographic-location factor with
condition as marine application.

2) The whole notion of using the data file can be replaced by another approach. To isolate
changes to existing codes, the functionalities as defined by the interface to this class (public
methods) must be conformed to by the new implementation.

See Also:
Serialized Form

Nested Class Summary

 class ComponentLifeTableInput.Parameter

Constructor Summary

ComponentLifeTableInput()

 163

 Creates a new instance of ComponentLifeTableInput

ComponentLifeTableInput(java.lang.String fileName)
 Creates a new instance of ComponentLifeTableInput based on the contents of a data
file.

Method Summary

 java.lang.String getColumn(java.lang.String str, int col

 int getMaxInt(java.lang.String str)
 Helper function to get the maximum value from a
reprsentation of a range.

 ComponentLifeTableInput.Parameter getParameter()
 Getter for property parameter.

 double getParameterSimilarityIndex(java.lang.String name,
int oldCaseValue, int newCas
java.lang.String condition)

 double getParameterSimilarityIndex(java.lang.String name,
java.lang.String oldCaseValue,
java.lang.String newCaseValue,
java.lang.String condition)

 java.util.Vector getTableContents()
 Getter for property tableContents.

 java.lang.String getVariableName(java.lang.String name,
java.lang.String condition, int intInpu

static void main(java.lang.String[] args)
 Unit testing function.

 void setParameter(ComponentLifeTableInput.Parameter par
 Setter for property parameter.

 void setTableContents(java.util.Vector tableContents)
 Setter for property tableContents.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

 164

Constructor Detail
ComponentLifeTableInput

public ComponentLifeTableInput()

Creates a new instance of ComponentLifeTableInput

ComponentLifeTableInput

public ComponentLifeTableInput(java.lang.String fileName)

Creates a new instance of ComponentLifeTableInput based on the contents of a data
file.

Method Detail
getParameter

public ComponentLifeTableInput.Parameter getParameter()

Getter for property parameter.

Returns:
Value of property parameter.

setParameter

public void setParameter(ComponentLifeTableInput.Parameter parameter)

Setter for property parameter.

Parameters:
parameter - New value of property parameter.

getTableContents

public java.util.Vector getTableContents()

Getter for property tableContents.

Returns:
Value of property tableContents.

setTableContents

public void setTableContents(java.util.Vector tableContents)

Setter for property tableContents.

Parameters:
tableContents - New value of property tableContents.

getParameterSimilarityIndex

 165

public double getParameterSimilarityIndex(java.lang.String name,
 java.lang.String oldCaseValue,
 java.lang.String newCaseValue,
 java.lang.String condition)

getColumn

public java.lang.String getColumn(java.lang.String str,
 int columnNum)

getParameterSimilarityIndex

public double getParameterSimilarityIndex(java.lang.String name,
 int oldCaseValue,
 int newCaseValue,
 java.lang.String condition)

getVariableName

public java.lang.String getVariableName(java.lang.String name,
 java.lang.String condition,
 int intInputValue)

getMaxInt

public int getMaxInt(java.lang.String str)

Helper function to get the maximum value from a String reprsentation of a range. For
example: the function will return an integer of value 2 when str equals to ""

main

public static void main(java.lang.String[] args)

Unit testing function.

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 166

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeTableInput.Parameter

java.lang.Object
 ComponentLifeTableInput.Parameter
All Implemented Interfaces:

java.io.Serializable

Enclosing class:
ComponentLifeTableInput

public class ComponentLifeTableInput.Parameter
extends java.lang.Object

implements java.io.Serializable

See Also:
Serialized Form

Constructor Summary

ComponentLifeTableInput.Parameter()

Method Summary

 java.lang.String getCondition()
 Getter for property condition.

 java.lang.String getName()
 Getter for property name.

 java.util.Vector getTable()
 Getter for property table.

 java.util.Vector getVariables()
 Getter for property variables.

 void setCondition(java.lang.String condition)
 Setter for property condition.

 void setName(java.lang.String name)
 Setter for property name.

 167

 void setTable(java.util.Vector table)
 Setter for property table.

 void setVariables(java.util.Vector variables)
 Setter for property variables.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail
ComponentLifeTableInput.Parameter

public ComponentLifeTableInput.Parameter()

Method Detail
getName

public java.lang.String getName()

Getter for property name.

Returns:
Value of property name.

setName

public void setName(java.lang.String name)

Setter for property name.

Parameters:
name - New value of property name.

getCondition

public java.lang.String getCondition()

Getter for property condition.

Returns:
Value of property condition.

setCondition

 168

public void setCondition(java.lang.String condition)
Setter for property condition.

Parameters:
condition - New value of property condition.

getTable

public java.util.Vector getTable()

Getter for property table.

Returns:
Value of property table.

setTable

public void setTable(java.util.Vector table)

Setter for property table.

Parameters:
table - New value of property table.

getVariables

public java.util.Vector getVariables()

Getter for property variables.

Returns:
Value of property variables.

setVariables

public void setVariables(java.util.Vector variables)

Setter for property variables.

Parameters:
variables - New value of property variables.

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 169

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Class ComponentLifeUserInput

java.lang.Object
 ComponentLifeUserInput
All Implemented Interfaces:

java.io.Serializable

public class ComponentLifeUserInput
extends java.lang.Object

implements java.io.Serializable

This class represents the set of input paramaters and their associated values.

Currently objects from this class are created without the use of graphical user interface within
the main method of ComponentLifeSituatedCBR.

See Also:
Serialized Form

Constructor Summary

ComponentLifeUserInput()
 Creates a new instance of ComponentLifeUserInput

ComponentLifeUserInput(ComponentLifeUserInput oldInput)
 Duplicates a new instance of ComponentLifeUserInput

ComponentLifeUserInput(double locX, double locY,
java.lang.String material, java.lang.String componentType,
java.lang.String maintenanceState, java.lang.String cleaningState,
java.lang.String cleaningCondition, java.lang.String locationInBuilding,
java.lang.String geoLocationCondition)
 Creates a new instance of ComponentLifeUserInput

Method Summary

 java.lang.String getCleaningCondition()
 Getter for property cleaningCondition.

 java.lang.String getCleaningState()

 170

 Getter for property cleaningState.

 java.lang.String getComponentType()
 Getter for property componentType.

 java.lang.String getGeoLocationCondition()
 Getter for property geoLocationState.

 java.lang.String getLocationInBuilding()
 Getter for property locationInBuilding.

 java.lang.String getMaintenanceState()
 Getter for property maintanenceState.

 java.lang.String getMaterial()
 Getter for property material.

 double getSalt()
 Getter for property salt.

 ComponentLifeGeoLocation getSiteLocation()
 Getter for property geoLocation.

 double getToW()
 Getter for property toW.

 void setCleaningCondition(java.lang.String cleaningCondition)
 Setter for property cleaningCondition.

 void setCleaningState(java.lang.String cleaningState)
 Setter for property cleaningState.

 void setComponentType(java.lang.String componentType)
 Setter for property componentType.

 void setGeoLocationCondition(java.lang.String geoLocationConditi
 Setter for property geoLocationState.

 void setLocationInBuilding(java.lang.String locationInBuilding)
 Setter for property locationInBuilding.

 void setMaintenanceState(java.lang.String maintenanceState)
 Setter for property maintanenceState.

 void setMaterial(java.lang.String material)
 Setter for property material.

 void setSalt()
 Setter for property salt using a ComponentLifeHolisticModel object

 void setSalt(double salt)
 Setter for property salt.

 void setSiteLocation(ComponentLifeGeoLocation geoLocation)
 Setter for property geoLocation.

 void setToW()
 Setter for property toW using a ComponentLifeHolisticModel object

 171

 void setToW(double toW)
 Setter for property toW.

 java.lang.String toString()
 Return a String representation of the object.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,
wait

Constructor Detail
ComponentLifeUserInput

public ComponentLifeUserInput()

Creates a new instance of ComponentLifeUserInput

ComponentLifeUserInput

public ComponentLifeUserInput(double locX,
 double locY,
 java.lang.String material,
 java.lang.String componentType,
 java.lang.String maintenanceState,
 java.lang.String cleaningState,
 java.lang.String cleaningCondition,
 java.lang.String locationInBuilding,
 java.lang.String geoLocationCondition)

Creates a new instance of ComponentLifeUserInput

ComponentLifeUserInput

public ComponentLifeUserInput(ComponentLifeUserInput oldInput)

Duplicates a new instance of ComponentLifeUserInput

Method Detail
getSiteLocation

public ComponentLifeGeoLocation getSiteLocation()

Getter for property geoLocation.

Returns:
Value of property geoLocation.

 172

setSiteLocation

public void setSiteLocation(ComponentLifeGeoLocation geoLocation)

Setter for property geoLocation.

Parameters:
geoLocation - New value of property geoLocation.

getMaterial

public java.lang.String getMaterial()

Getter for property material.

Returns:
Value of property material.

setMaterial

public void setMaterial(java.lang.String material)

Setter for property material.

Parameters:
material - New value of property material.

getComponentType

public java.lang.String getComponentType()

Getter for property componentType.

Returns:
Value of property componentType.

setComponentType

public void setComponentType(java.lang.String componentType)

Setter for property componentType.

Parameters:
componentType - New value of property componentType.

getMaintenanceState

public java.lang.String getMaintenanceState()

Getter for property maintanenceState.

Returns:
Value of property maintanenceState.

setMaintenanceState

 173

public void setMaintenanceState(java.lang.String maintenanceState)

Setter for property maintanenceState.

getCleaningState

public java.lang.String getCleaningState()

Getter for property cleaningState.

Returns:
Value of property cleaningState.

setCleaningState

public void setCleaningState(java.lang.String cleaningState)

Setter for property cleaningState.

Parameters:
cleaningState - New value of property cleaningState.

getCleaningCondition

public java.lang.String getCleaningCondition()

Getter for property cleaningCondition.

Returns:
Value of property cleaningCondition.

setCleaningCondition

public void setCleaningCondition(java.lang.String cleaningCondition)

Setter for property cleaningCondition.

Parameters:
cleaningCondition - New value of property cleaningCondition.

getLocationInBuilding

public java.lang.String getLocationInBuilding()

Getter for property locationInBuilding.

Returns:
Value of property locationInBuilding.

setLocationInBuilding

public void setLocationInBuilding(java.lang.String locationInBuilding)

Setter for property locationInBuilding.

Parameters:

 174

locationInBuilding - New value of property locationInBuilding.

getGeoLocationCondition

public java.lang.String getGeoLocationCondition()

Getter for property geoLocationState.

Returns:
Value of property geoLocationState.

setGeoLocationCondition

public void setGeoLocationCondition(java.lang.String geoLocationCondition)

Setter for property geoLocationState.

getToW

public double getToW()

Getter for property toW.

Returns:
Value of property toW.

setToW

public void setToW(double toW)

Setter for property toW.

Parameters:
toW - New value of property toW.

setToW

public void setToW()

Setter for property toW using a ComponentLifeHolisticModel object.

getSalt

public double getSalt()

Getter for property salt.

Returns:
Value of property salt.

setSalt

public void setSalt(double salt)

 175

Setter for property salt.

Parameters:
salt - New value of property salt.

setSalt

public void setSalt()

Setter for property salt using a ComponentLifeHolisticModel object.

toString

public java.lang.String toString()

Return a String representation of the object.

 Package Class Tree Deprecated Index Help

 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

 176

Appendix V Codes for Unit Testing
(for class ComponentLifeTableInput)

 public static void main(String[] args){

 System.out.println("\n\n\n******** Testing of ComponentLifeTableInput Class ********\n\n\n");

 ComponentLifeTableInput clife = new ComponentLifeTableInput("D:\\My Documents\\Working\\CRC_SituatedCaseBasedSystem\\Coding\\userInputCFG.txt");

 Vector cont = clife.getTableContents();

 /* Testing cods to look into the table

 int size = cont.size();

 for (int i=0; i<size; i++){
 Parameter par = (Parameter)cont.get(i);

 System.out.println("Name: " + par.getName());

 System.out.println("Condition: " + par.getCondition());

 Vector var = par.getVariables();

 int sizeV = var.size();

 for (int j=0; j<sizeV; j++){

 System.out.println("\tVariables: " + ((String)var.get(j)));

 }

 Vector tab = par.getTable();

 int sizeT = tab.size();

 for (int k=0; k<sizeT; k++){

 System.out.println("\tTable: " + ((String)tab.get(k)));

 }

 System.out.println("\n");

 }*/

 //String col = "0 0.7 1 0.9";

 //System.out.println("Test: " + clife.getColumn(col, 3));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("maintenance state", "maintained", "maintained", "NULL"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("maintenance state", "not maintained", "not maintained", "NULL"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("maintenance state", "maintained", "not maintained", "NULL"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("maintenance state", "not maintained", "maintained", "NULL"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "cleaned", "cleaned", "gunk can collect"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "not cleaned", "not cleaned", "gunk can collect"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "cleaned", "not cleaned", "gunk can collect"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "not cleaned", "cleaned", "gunk can collect"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "cleaned", "cleaned", "gunk cannot collect"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "not cleaned", "not cleaned", "gunk cannot collect"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "cleaned", "not cleaned", "gunk cannot collect"));

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("cleaning", "not cleaned", "cleaned", "gunk cannot collect"));

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "underfloor positions in contact with earth", "NULL"));

 177

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open rooftop", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "open wall", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "sheltered wall", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "edges and external corners of walls or roofs", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "underfloor cavity", "NULL"));

 178

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "dirt accumulation zone", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "roof cavity", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "wall cavity", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "moisture accumulation points in wall cavities", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "moisture accumulation points in wall cavities", "NULL"));

 179

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor cavity", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "underfloor positions in contact with earth", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "semi enclosed space", "enclosed room", "NULL"));

 */

 /*

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "open rooftop", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "open wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "sheltered wall", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "edges and external corners of walls or roofs", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "dirt accumulation zone", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "roof cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "wall cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "moisture accumulation points in wall cavities", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "underfloor cavity", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "underfloor positions in contact with earth", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "semi enclosed space", "NULL"));

 System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed room", "enclosed room", "NULL"));

 */

 // Out of range test

 //System.out.println("Test: " + clife.getParameterSimilarityIndex("location in building", "enclosed rooms", "enclosed room", "NULL"));

 //String str = "20 to 39";

 //System.out.println("Max: " + (str.substring(str.indexOf("to")+2)).trim());

 //System.out.println("Min: " + (str.substring(0,str.indexOf("to")-1)).trim());

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 0, 0, "marine application"));

 180

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 5, 5, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 19, 19, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 20, 20, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 25, 25, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 39, 39, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 40, 40, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 45, 45, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 59, 59, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 60, 60, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 65, 65, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 79, 79, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 80, 80, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 85, 85, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 100, 100, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 5, 25, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 5, 45, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 5, 65, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 5, 85, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 25, 5, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 25, 45, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 25, 65, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 25, 85, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 45, 5, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 45, 25, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 45, 65, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 45, 85, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 65, 5, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 65, 25, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 65, 45, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 65, 85, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 85, 5, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 85, 25, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 85, 45, "marine application"));

 //System.out.println("ToW: " + clife.getParameterSimilarityIndex("time of wetness", 85, 65, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 0, 0, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 2, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 4, 4, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 5, 5, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 10, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 15, 15, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 16, 16, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 28, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 40, 40, "marine application"));

 181

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 41, 41, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 70, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 100, 100, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 101, 101, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 200, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 300, 300, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 301, 301, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 350, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 400, 400, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 10, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 28, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 70, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 200, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 2, 350, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 2, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 28, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 70, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 200, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 10, 350, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 2, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 10, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 70, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 200, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 28, 350, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 2, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 10, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 28, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 200, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 70, 350, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 2, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 10, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 28, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 70, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 200, 350, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 2, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 10, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 28, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 70, "marine application"));

 //System.out.println("Salt: " + clife.getParameterSimilarityIndex("salinity factor", 350, 200, "marine application"));

 }

 182

12. AUTHOR BIOGRAPHIES

