Noise Management in Urban Environments

Decision-support Software Tool Handbook

Decision-support Software Tool Handbook

© Icon.Net Pty Ltd 2005

Office: Cooperative Research Centre for *Construction Innovation* 9th Floor, Level 9, QUT Gardens Point 2 George Street, Brisbane, Qld, 4000 Australia Telephone: +61 7 3864 1393 Email: <u>enquiries@construction-innovation.info</u> Web: www.construction-innovation.info

The rights of the Authors to be identified as the Authors of this Work has been asserted in accordance with the Copyright Act 1968.

All rights reserved. This book is copyright. Other than for the purposes of and subject to the conditions prescribed under the *Copyright Act*, no part of it may be in any form or by any means (electronic, mechanical, microcopying, photocopying, recording or otherwise) be reproduced, stored in a retrieval system or transmitted without the prior permission of the publisher.

All intellectual property in the ideas, concepts and design for this publication belongs to Icon.Net Pty Ltd.

The authors, the Cooperative Research Centre for *Construction Innovation*, Icon.Net Pty Ltd, and their respective boards, stakeholders, officers, employees and agents make no representation or warranty concerning the accuracy or completeness of the information in this work. To the extent permissible by law, the aforementioned persons exclude all implied conditions or warranties and disclaim all liability for any loss or damage or other consequences howsoever arising from the use of the information in this book.

First published 2005 by Cooperative Research Centre for Construction Innovation, for Icon.Net Pty Ltd.

For further information on our publications, please visit our website: www.construction-innovation.info

ISBN

Foreword

CRC Construction Innovation

The Cooperative Research Centre (CRC) for *Construction Innovation* is committed to leading the

Australian property, design, construction and facility management industry in collaboration and innovation. We are dedicated to disseminating the practical research outcomes to our industry – to improve business practice and enhance the competitiveness of your firm. Developing applied technology and management solutions, and delivering education and relevant industry information is what our CRC is all about.

This publication "Decision Support Software Tool Handbook" results from one of our leading projects headed by Dr. Saman de Silva with a project team comprising Dr. Li Chen and Mr. Philip Douglas (*RMIT University*) and Mrs. Julie Peters, (*Queensland Department of Main Roads*).

This publication has examined ... and provides clear guidelines to industry in the areas of ... to improve the business.

We look forward to your converting the results of this CRC research project into tangible outcomes and working together in leading the transformation of our industry to a new era of enhanced business practices, safety and innovation within the sector.

Mr John McCarthy Chair

Dr Keith Hampson Chief Executive Officer

Contents

PRE	FACE	. 6
1.	INTRODUCTION	. 7
2.	OVERVIEW OF THE DECISION-SUPPORT FRAMEWORK	. 8
3.	DECISION-SUPPORT PROCEDURAL GUIDE	12
3.	1 ZONE 1: NOISE IMPACT AND CODE ASSESSMENT	12
	Noise impact	12
	Code assessment	12
3.	2 ZONE 2: OPTION IDENTIFICATION	13
	Ameliorative treatment options within the road reserve	13
	Amelioration treatment options outside the road reserve	13
0	Combination of ameliorative treatment options within and outside the road reserve	13
3.	3 ZONE 3: AMELIORATION ANALYSIS	13
2		14
ა. ვ	4 ZONE 4. FEASIBILITY OF OPTIONS	14
Э. З	5 ZUNE 5. CUNCEPT COSTING	15
3	7 ZONE 7: REDORT GENERATION	16
RFF	FRENCES	18
		-
USE	ER GUIDE ERROR! BOOKMARK NOT DEFINE	D.
SEC	CTION 1	20
н	ARDWARE AND SOFTWARE REQUIREMENTS	20
S	ET-UP	20
SEC	CTION 2	20
51		20
5		20
T	COMPARE ASSESSMENT NOISE LEVELS AGAINST THE RELEVANT CRITERIA	24
T) IMPORT AND EDIT SINGLE-POINT RECEIVER NOISE DATA	26
T	DIDENTIFY AND SELECT A RANGE OF POSSIBLE TREATMENT OPTIONS	28
TC	CONDUCT AN AMELIORATION ANALYSIS	29
T	CONDUCT AN AMELIORATION ANALYSIS OF A NON-COMBINED TREATMENT	29
Тс	CONDUCT AMELIORATION ANALYSIS OF COMBINED TREATMENTS	31
	To select a proposed pavement surface type	32
Т	O APPLY BUILDING TREATMENT TO ALL RECEIVERS EXCEEDING CRITERIA	32
Тс	O COMPARE TREATMENT OPTIONS WITH THE PREFERRED AMELIORATIVE STRATEGIES	33
Тс	D IMPORT NOISE BARRIER DESIGN DETAILS	34
Т	D DEVELOP A CONCEPT COSTING FOR A TREATMENT OPTION	35
Тс	O COST THE CONSTRUCTION OF NOISE BARRIERS	37
Тс	D COST THE RESURFACING OF A ROAD	37
Тс	D COST THE TREATMENT OF BUILDINGS	38
Тс	O ANALYSE THE BENEFIT OF A TREATMENT OPTION	39
SEC		41
TF	ROUBLESHOOTING	41
ΙΝΤΙ		43

CASE STUDY 1: OLD NORTHERN ROAD BETWEEN THE JINKER TRACK TO KEONG ROA	D,
ALBANY CREEK, QUEENSLAND	44
NOISE STUDY AREA NOISE IMPACT AND CODE ASSESSMENT. OPTION IDENTIFICATION. AMELIORATION ANALYSIS. FEASIBILITY OF OPTIONS. CONCEPT COSTING. BENEFIT ANALYSIS. CASE STUDY 2: MT LINDESAY HIGHWAY	44 45 46 48 48 49 51
NOISE STUDY AREA	51
NOISE IMPACT AND CODE ASSESSMENT.	52
OPTION IDENTIFICATION.	53
AMELIORATION ANALYSIS.	54
FEASIBILITY OF OPTIONS.	56
CONCEPT COSTING.	56
BENEFIT ANALYSIS.	57
CASE STUDY 3: PACIFIC MOTORWAY BETWEEN PEACHEY ROAD AND PIMPAMA RIVER	,
ORMEAU, QUEENSLAND.	60
NOISE STUDY AREA NOISE IMPACT AND CODE ASSESSMENT OPTION IDENTIFICATION AMELIORATION ANALYSIS FEASIBILITY OF OPTIONS CONCEPT COSTING BENEFIT ANALYSIS CONCLUSION	60 61 62 63 63 64 65

Preface

The Decision Support Handbook is a product of the research project Noise Management in Urban Environments, funded by CRC for Construction Innovation Australia. The research work has been conducted jointly by the RMIT University and the Queensland Department of Main Roads in collaboration with the Queensland Department of Public Works, Arup Pty Ltd, and the Queensland University of Technology.

This handbook is a noise amelioration procedural guide outlining the system framework developed for the decision support tool and incorporates the DST software user guide.

It is not intended for this document to cover policy issues. In this regard, please refer to the current policy and/or guidelines established by the managing authority.

1. Introduction

The road and transport industry in Australia and overseas has come a long way to understanding the impact of road traffic noise on the urban environment. Most road authorities now have guidelines to help assess and manage the impact of road traffic noise on noise-sensitive areas and development.

While several economic studies across Australia and overseas have tried to value the impact of noise on property prices, decision-makers investing in road traffic noise management strategies have relatively limited historic data and case studies to go on.

The perceived success of a noise management strategy currently relies largely on community expectations at a given time, and is not necessarily based on the analysis of the costs and benefits, or the long-term viability and value to the community of the proposed treatment options.

With changing trends in urban design, it is essential that the 'whole-of-life' costs and benefits of noise ameliorative treatment options and strategies be identified and made available for decision-makers in future investment considerations.

For this reason, CRC for Construction Innovation Australia funded a research project, Noise Management in Urban Environments to help decision-makers with future road traffic noise management investment decisions. RMIT University and the Queensland Department of Main Roads (QDMR) have conducted the research work, in collaboration with the Queensland Department of Public Works, ARUP Pty Ltd, and the Queensland University of Technology.

The research has formed the basis for the development of a decision-support software tool, and helped collate technical and costing data for known noise amelioration treatment options.

We intend that the decision support software tool (DST) should help an investment decision-maker to be better informed of suitable noise ameliorative treatment options on a project-by-project basis and identify likely costs and benefits associated with each of those options.

This handbook has been prepared as a procedural guide for conducting a comparative assessment of noise ameliorative options. The handbook outlines the methodology and assumptions adopted in the decision-support framework for the investment decision-maker and user of the DST.

The DST has been developed to provide an integrated user-friendly interface between road traffic noise modelling software, the relevant assessment criteria and the options analysis process. A user guide for the DST is incorporated in this handbook.

2. Overview of the decision-support framework

A decision-support framework has been established to reflect the decision-making process involved in conducting a comparative analysis of noise amelioration treatment options for any given project. The decision-support framework is presented in the form of a flowchart as illustrated in Figure 1.

The decision-support framework has seven key processes, labelled as "zones". The seven zones are:

Zone 1: Noise impact and code assessment

Zone 2: Option identification

Zone 3: Amelioration analyses

Zone 4: Feasibility of options

Zone 5: Concept costing

Zone 6: Benefit analyses

Zone 7: Report generation

A number of the processes outlined in the framework have already been adopted and streamlined by industry and road authorities, but these processes have not been fully integrated and supported to incorporate the feasibility and cost-benefit evaluation as part of the decision-support environment.

Throughout the framework, there are data inputs, assessment stages and decisions points necessary to ultimately identify the likely costs and benefits of suitable noise ameliorative treatment options.

The decision-support framework adopts a filtering approach to all possible treatment options by assessing their technical viability and feasibility, and assessing the costs and benefits of those suitable treatment options on a given road segment. The decision-maker is still responsible for the accuracy of the data inputs required and the final judgment of the most preferred option, based on the information at hand.

In Section 3 of this handbook, the decision-support procedural guide outlines the inputs required and the assessment methodology adopted in each zone of the decision-support framework.

The DST has been developed using the framework described above and illustrated in Figure 1. The DST facilitates the integration of traffic noise modelling software packages, provides the cost database for alternative ameliorative treatments within and outside the road reserve, references relevant noise assessment criteria and generates reports. The software has an interactive user interface that enables the user to conduct cost–benefit analyses of suitable alternative amelioration treatment options. The user guide for the DST is provided in Section 4 of this handbook.

FIGURE 1: DECISION-SUPPORT FRAMEWORK

3. Decision-support procedural guide

3.1 Zone 1: Noise impact and code assessment

Noise impact

A road traffic noise assessment must first be undertaken for a given road segment to determine the impact of road traffic noise on adjacent noise-sensitive land uses.

In the noise impact and code assessment zone, the road segment under investigation is identified and described in terms of both the traffic noise source details and the surrounding terrain and feature data. The parameters that define the traffic noise source are the speed, average annual daily traffic (AADT), vehicle composition, and road surface type.

Three-dimensional models, in a form typical of an AutoCAD file, that contain spatial information for the road and the environment surrounding the road segment represent the terrain and feature data. The terrain and feature data includes topography, vegetation type, building property, and road and road reserve boundaries.

The noise impact and code assessment zone is also designed to provide a user interface to call or launch the commercially available road traffic noise modelling software. The road traffic modelling software can access the terrain, feature and traffic data of the road segment and surrounding environment in DXF format. When executed, the modelling software calculates predicted noise levels at selected nearby noise-sensitive receivers (residences, schools, hospitals). These prediction noise levels must be verified against noise measurement data at representative locations.

A number of traffic noise prediction models and commercially available noise modelling software packages are available. The decision-support framework cites the UK's Department of Transport (1988) procedure, Calculation of Road Traffic Noise (Corn 88), as an example of a traffic noise prediction model.

Code assessment

It should be noted that in version (V 1.0a) of the DST, the noise assessment criteria adopted in the code assessment is based on the QDMR's Road Traffic Noise Management: Code of Practice, January 2000.

Having established the noise impact on the surrounding environment, the decision-support framework leads to the code assessment. This is to determine whether the receivers are predicted to be exposed to noise that exceeds the criteria in the guidelines. The noise criteria are a set of limiting noise levels that private residences, schools, and so on can be exposed to without the need for ameliorative treatment. The established noise criteria database in the DST provides a way for the decision-maker to import the receiver details and predicted noise levels for a given assessment year and also select the relevant authority's assessment criteria. If the predicted noise level exceeds the external noise criteria, ameliorative treatment is required.

If ameliorative treatment is not required for the assessment year, then there is no need to progress to Zone 2, Option identification.

3.2 Zone 2: Option identification

The purpose of this zone is to identify all the amelioration options that could be used to reduce the noise level that exceeds the noise criteria.

The proposed decision-support framework facilitates the identification of possible treatments not only within and outside the road reserve, but also a combination of both. The decision-maker needs to identify a list of possible treatment options available. A user of the DST is presented with the 'inventory of all possible treatment options'. This inventory of possible treatment options includes:

Ameliorative treatment options within the road reserve

- pavement resurfacing
- noise barrier wall
- noise barrier earthmound
- reduction of signposted speed.

Amelioration treatment options outside the road reserve

- acoustic treatment of buildings
- courtyard screen/fence.

Combination of ameliorative treatment options within and outside the road reserve

- pavement resurfacing and noise barrier wall or earthmound
- pavement resurfacing and reduction of signposted speed
- pavement resurfacing and acoustic treatment of buildings
- pavement resurfacing and courtyard screen/fence
- noise barrier (wall or earthmound) and reduction of signposted speed
- noise barrier (wall or earthmound) and acoustic treatment of buildings
- noise barrier (wall or earthmound) and courtyard screen/fence
- acoustic treatment of buildings and courtyard screen/fence.

The purpose of treating the building envelope is to reduce the internal noise only, when the external noise criteria cannot be achieved. The Australian standard (AS3671, 1989) provides a procedure for determining appropriate treatments that correspond to the noise reduction required for internal noise levels.

In the DST, the user can display a list of the possible treatment options and discard any. A record of options discarded and the reasons why can be reported.

3.3 Zone 3: Amelioration analysis

The purpose of the amelioration analysis zone is to determine whether the preferred treatment options identified in Zone 2 are technically viable to achieve the noise criteria. The DST provides for technical validation of preferred amelioration options within the road reserve, outside the road reserve, and in a combination of both.

The commercially available traffic noise modelling software packages are to be used to model and analyse preferred treatment options including noise barriers, road surface treatments, and a courtyard screen/fence.

The prediction noise model can be run for a number of designs for each treatment option or a combination of options. The predicted noise levels at the sensitive receivers are then compared to the relevant criterion level. Interactively, by a process of iteration, the amelioration treatment option design can be varied and the models re-run to achieve the relevant criterion level.

The expected maximum reduction in noise level that can be achieved by pavement resurfacing and reduction of signposted speed is conveyed to the user of the DST. This is used as the technical validation of these specific treatment options, and it is based on research conducted by the QDMR.

Acoustic treatment of buildings

The DST makes reference to sections of the Australian Standard (AS2107, 2000), which are stored in the internal criteria database. Provisions are made to determine the necessary construction category of the building envelope to achieve the desired reduction of noise through transmission losses at the building facade. The type of construction used in the noise-sensitive building could then be assessed to determine whether it was equivalent to or could be realistically upgraded to be equivalent to the construction category required. If the construction category of the building envelope was found to be unsuitable for treatment, this option would have to be discarded.

Commercially available software based on the Australian Standards (AS3671, 1989; AS2107, 2000) is also available to assess the architectural requirements for acoustic treatment at the building envelope and so on. This software for outside road reserve treatments can evaluate composite noise transmission losses through the building envelope. The user can select the target values based on the internal noise criteria established in the Australian Standards (AS2107, 2000).

Having selected the appropriate internal noise criteria, and knowing the external noise levels, the target reduction is established. The user then tries out different acoustic treatments to building facade elements until either the internal noise level is equal to, or lower than, the target value, or it is found that it is not possible to sufficiently reduce the noise level. The user can also select the number of buildings of this type that would require similar treatment. This process can be repeated for each different building type that is exposed to a noise level that exceeds the external noise criteria.

The decision-support framework offers a combination of external and internal criteria to achieve the desired outcome. This approach is good when all amelioration options within the road reserve have been fully or partially exhausted.

3.4 Zone 4: Feasibility of options

This is an interactive process in which the experience and knowledge of the decision-maker plays a major role in identifying options that are not practicable, already in place, or fully exhausted.

Many road authorities' current guidelines recommend or only support amelioration strategies within the road reserve. Options such as acoustic treatment of the building envelope may be considered only if all other treatment options have been exhausted.

At this stage, and after considering their practical viability and constructability, the decision-maker can narrow-down the technically viable ameliorative options. In judging whether an option is

practical or can be constructed, several integrated design and social factors specific to the road segment and road authorities may get in the way of the chosen treatment option. Examples are:

- where there is insufficient corridor width within the existing road reserve for an earthmound
- when the road segment is non-access controlled; noise barriers cannot be continuous because of access to the road segment from adjoining noise-sensitive properties
- if a reduction of signposted speed may not be acceptable to the road user
- where the required height of the noise barrier exceeds the barrier height restriction of the road authority.

3.5 Zone 5: Concept costing

In this zone, we look at the cost of carrying out the preferred option. It is a good idea to establish a cost database for standard noise ameliorative treatment options both within and outside the road reserve. A cost database has been incorporated into the DST, based on historic and estimated cost data provided by the QDMR, and current when this document was prepared (February 2005), but such a database needs to be updated to reflect the latest industry costs and practices.

At this stage each selected treatment option is conceptually developed and the technical details are available for estimating costs. The concept design of the treatment option has been developed to the extent that parameters such as the length, height and material type can be determined. Reasonable cost estimates and a concept cost can be established for each option based on the cost database.

The concept costing module of the DST allows the user to select relevant items through a pulldown form, and the user enters the quantity. A concept cost estimate is produced by the software giving the total concept cost of the treatment option. The cost estimate can include project management, survey/design and service relocation estimated costs.

An evaluation of the costs in terms of present value or discounted future values should also be undertaken when assessing future assessment years to work towards an optimum solution. This enables the possibility of comparing a number of treatment strategies developed over several planning horizons.

3.6 Zone 6: Benefit analysis

The benefits of a treatment option depend on the perspective of who is to receive the benefit as well as on how it is measured. Accordingly there are many different ways to measure benefit. For this reason, the decision-support framework does not attempt to quantify the benefits. Figure 2 illustrates a cost-benefit matrix approach. Ameliorative treatment options are identified in the matrix and the advantages and disadvantages of each are represented against each cost-benefit factor.

The decision-maker needs to be able to conduct an analysis using a range of measures, including social and environmental factors, to identify the preferred treatment option for a given road segment.

In addition the cost-benefit matrix can be used for reference and reporting when conducting a comparative analysis of the cost and the selected measures of benefit for each of the suitable treatment options.

At this stage it is also possible to assess the feasible and reasonable treatment options at planning dates 10 or 20 years into the future. The process is the same as for assessing treatment options in

the current planning where the decision-maker again follows the procedures from Zone 1 to Zone 6 as discussed previously.

3.7 Zone 7: Report generation

In this zone a final report should be compiled, listing all the ameliorative treatment options investigated and identifying the options discarded and why. The report should include cost estimates and benefit analyses for the options analysed, and also assess the ameliorative treatment options required now and in the future.

The report can then be made available for stakeholder and public consultation before the final judgment is made. Once the treatment option has been implemented, post-implementation monitoring should be carried out for audit purposes and future reference.

FIGURE 2: COST-BENEFIT MATRIX

+ Represents potential advantages or nil impact

- Represents potential disadvantages

C	ost_bonofit factors	Ameliorative treatment options								
Ŭ			Within the r	oad reserve		Outside the road reserve				
Catego	Factors	Pavement	Noise barrier	Noise barrier	Signposted	Acoustic treatment of				
ry		resurfacing	(wall)	(earthmound)	speed reduction	buildings				
Economi c	Initial project costs	+ Moderate	– High	– High	+ Low	+ Low to moderate				
	Maintenance/operational costs	- Moderate	- Moderate	– Low	+ Low	 Moderate (responsibility of property owner) 				
Environ- mental	Air circulation	+ Nil impact	 Potential impact 	 Potential impact 	+ NIL impact	 May require mechanical ventilation/air exchange 				
	Shade effects	+ Nil impact	 Potential impact 	+ Minimal impact	+ Nil impact	+ Nil impact				
	Fauna movements	+ Nil impact	 Potential impact 	± Site-specifics to be considered in design	+ Nil impact	+ Nil impact				
	Adverse operational impacts	+ Nil impact	+ Minimal impact	+ Minimal impact	+ Nil impact	 Need to solve problems with ventilation & air-conditioning noise 				
	Visual aesthetics	+ Nil impact	 Potential impact 	 Minimal impact if suitable design incl. landscaping 	+ Nil impact	+ Minimal impact				
Social	Safety requirements	+ Surface drainage to be considered	 Site-specifics to be considered in design 	 Site-specifics to be considered in design 	\pm Road safety audit should be undertaken	+ Nil impact				
	Maintenance/access requirements	+ Nil impact	 Site-specifics to be considered in design 	 Site-specifics to be considered in design 	+ Nil impact	+ Nil impact				
	Preserving views	+ Nil impact	 Potential impact 	 Potential impact 	+ Nil impact	+ Nil impact				
	Public amenity	+ Nil impact	 Restricts access in area 	 Restricts access in area 	+ Potential to improve local area amenity	 May restrict options to open and close windows & doors 				
	Visual considerations	+ Nil impact	 Site-specifics to be considered in design (incl. community art) 	 Site-specifics to be considered in design 	+ Nil impact	+ Nil impact				
	Community benefit	+ Provides benefit to local community and road user	+ Provides benefit to local community	+ Provides benefit to local community	+ Provides benefit to local community	 Restricts benefit to individual dwellings 				
	Privacy and security	+ Nil impact	 Site-specifics to be considered in design 	 Site-specifics to be considered in design 	+ Nil impact	+ No direct impact				

References

Australian Standard 2107 (2000), Acoustics: Recommended design sound levels and reverberation times for building interiors

Australian Standard 3671 (1989), Acoustics: Road traffic noise intrusion — Building siting and construction

CRC-CI, Cooperative Research Centre for Construction Innovation, Australia, December 2004 Noise Management in Urban Environments, Project 2002-004B, Research Report

CRC-CI, *Cooperative Research Centre for Construction Innovation*, Australia, www.construction-innovation.info.

Great Britain Department of Transport, Welsh Office, (1988), *Calculation of Road Traffic Noise*, Her Majesty's Stationery Office, London

Queensland Department of Main Roads, January 2000, Road Traffic Noise Management: Code of Practice

Decision-support Software Tool User Guide

February 2005

Research team

Dr. Saman de Silva Dr. Li Chen, RMIT University Mr. Philip Douglas, RMIT University Mrs. Julie Peters, Queensland Department of Main Roads

Section 1

Hardware and software requirements

The hardware and software requirements of the Road Traffic Noise Management Decision-support Software Tool (DST) are:

- Pentium 90 MHz or higher microprocessor
- VGA 640X480 or higher resolution screen supported by Microsoft Windows
- Microsoft Windows 97 or later
- 24 MB RAM for Windows 97
- CD Drive (for installation from CD)
- Microsoft Excel 2000 or later.

For further details regarding the hardware requirements: http://msdn.microsoft.com/library/default.asp?url=/library/enus/vbcon98/html/vbconsystemrequirementsforvisualbasicapplications.asp

Set-up

Set-up from CD

- Insert CD into CD drive
- Execute Setup.exe from CD drive
- Follow the prompts until the program has been successfully installed.

Updating the DST.exe from an email attachment

- Copy the DST.exe file that has been attached to the email, to the folder in which the existing DST.exe has been set up
- Replace the existing DST.exe with the new DST.exe.

Section 2

Start-up screen

"DST- v.1.0.a" is what we call a properly set up DST, and it will give you an icon called DST1 on the desktop.

Double click on the DST1 icon to start the program. When you open the program the Main Window will be displayed as shown below. This works as a back-drop through the entire process, so we call it the Back-drop screen. All critical decision-support information will be written on to this screen. The drop-down menu bar at the top shows the six pull-down platforms required to complete the noise management decision-support process.

oau	Traffic Noise Management L	ecision support i	001 (V. 1.U.a)					
le 1	Voise Impact and Code Assessment	Option Identification	Amelioration Analys	is Feasibility Analy	sis Cost Analy	sis Benefit Ana	alysis	-
	Project ID Number :			Ass	essment Criteria	Scenario	I	
	Road Name :			E	Re Exis iducational and H Parks and Rec	ceiver Type ting Residences lealth Buildings rreational Areas	Criteria dB(A) Required Level Re L10 (18h) - Facade Corrected L10 (1h) - Internal L10 (12h) - Free Field	I Noise duction dB
Trea (tment Option Summary Option Option Description ID No Delete Add I	New Option	Criteria Fe Achieved (Cc	asible Ass onstructable) Yea	essment Con r Cos	cept : (\$)	List of Possible Treatment Options	

The process is sequential. This means the user has to complete each stage in this order:

- 1. Impact and Code Assessment
- 2. Options Identification
- 3. Amelioration Analysis
- 4. Feasibility Analysis
- 5. Cost Analysis
- 6. Benefit Analysis.

Work your way from left to right. As you complete each stage, the resulting critical information is displayed in the Back-drop screen.

💹 Roa	nd Traffic Noise Management [ecision Support T	ool (v. 1.0.a)			
🌆 File	Noise Impact and Code Assessment	Option Identification	Amelioration Analysis	Feasibility Analysis	Cost Analysis	Benefit Analysis

Starting a project and entering Site Information

The first stage of the process is to register the project, by giving the project an identification number called a Project ID Number. All projects are identified by this number for future use.

To start:

1. Pull down the *Noise Impact and Code Assessment* menu.

Project ID No.		Job Ref. No. Road No.		
No. of Road Segments	Add Segment Remove Segment	Relevant Criteria Assessment Year		Unde
Road Segment From		Lenath (m)	Existing Road Surface	Save
				Prin
				Exit

2. Click *Site Data* to open the *Site Information* window.

Enter site information, starting with the Project ID Number. If the Project ID Number entered already exists, you will be prompted with the message "Project ID is already there".

- 3. Click **OK** to acknowledge the prompt.
- 4. Enter all project identification details into the upper frame on the Site Information window.

The project identification details (shown on upper panel) apply to the whole project. Data entered within **Site Data** and **Traffic Data** apply only to each road segment (you can subdivide the noise corridor into segments).

	97/900/5				
Local Authority	Brisbane City Council		Job Ref. No.	[
Road Name	Old Northern Rd		Road No.		
No. of Road Segments	1	Add Segment	Relevant Criteria	QLD Main Roads	
		Remove Segment	Assessment Year	2002	
Road Segment From		To	Length (m)	Existing Road Surface	Sat
1 Jinker	Tk	Keong Rd	475	Dense Graded Asphalt	
					Pri
					Pri Ex
					Pri Ex

5. Click *Add Segment* to add a set of textboxes to both the Site Data and Traffic Data frames.

Road Segment	From	Io	Length (m)	Existing Road Surface
1	Jinker Tk	Keong Rd	475	Dense Graded Asphatt
				_

- 6. Enter *Site Data* and *Traffic Data* for all road segments.
- 7. Click on the *Existing Road Surface* pull-down menu and select the pavement surface type for each road segment.

Road Segment	From	To	Length (m)	Existing Road Surface
1	Jinker Tk	Keong Rd	475	Dense Graded Asphalt
				16-20mm Bitumen Seal
				Concrete
				5-14mm Bitumen Seal
				5mm Bitumen Seal
				Dense Graded Asphalt
				Stone Mastic Asphalt
				Boral Low Noise Asphalt
				Open Graded Asphalt

8. Click on the *Type of Road* pull-down menu and select the road type for each road segment.

Road Segment	AADT	<u>% CV</u>	Total Number of Lanes	Type of Road	Sign Posted Speed
1	22839	6 %	2	Divided Divided Undivided	70 km/h

- 9. Click *Save* to save data to the database after carefully checking data has been accurately entered.
- 10. Click *Exit* to close the Site Information window.

To compare assessment noise levels against the relevant criteria

You can determine the relevant criteria for a given scenario, compare assessment noise levels with the criteria, determine the amount by which a noise level exceeds the criteria, and determine the requirement for noise amelioration.

To start:

1. Pull down the *Noise Impact and Code Assessment* menu.

💹 Ro	📓 Road Traffic Noise Management Decision Support Tool (v. 1.0.a)							
🌆 File	File Noise Impact and Code Assessment Option Identi		fication	Amelioration Analysis	Feasibility Analysis	Cost Analysis	Benefit Analysis	
	Site Data		1					
	Assessment Against Relevant Noi:	se Criteria						

2. Click Assessment Against Relevant Noise Criteria to open the window.

Scenario			Г ^с	ombine With
C New Roads	- Background Noise Level	0 dB(A)		C Noise Barrier Treatment
Opprading Existence	sting Roads			C Pavement Surface Treatment
C Existing Roads	s (No Roadworks)			C Building Treatment
Access Edi Pai	Receiver Type Existing Residences ucation and Health Buildings rks and Recreational Areas	Receiver(s) Exceeding Criteria	Criteria dB	Griteria dB(A)68L10 (18h) - Facade Corrected55L10 (1h) - Internal63L10 (12h) - Free Field

3. In the Road Development Type frame select the relevant road development type for the project.

Scenario
C New Roads - Background Noise Level 0 dB(A)
Upgrading Existing Roads
C Existing Roads (No Roadworks)

The relevant criteria for a given scenario depend on the scenario or road development type. In the Road Development Type frame you can select the button corresponding to the scenario being assessed. The criteria values used are from the QDMR code of practice (2000). The criteria will change in accordance with the scenario selected and, in the case of a new road, also according to the background noise level measured before the new road development.

- 4. If the road development type is a New Road, input the *Background Noise Level* into the textbox.
- 5. Click *Import/Edit* in the Assessment of Amelioration Requirement frame to open the Import/Edit window.

Before the Import/Edit window opens, the **Open** window appears enabling you to locate and select the file from which single-point receiver assessment noise levels will be imported. This information is coming from analyses already completed using noise modelling software (SoundPLAN, TNM,

etc.). Once the noise levels have been imported and the Import/Edit window has been closed, the noise levels are compared to the criteria. The receivers with noise levels exceeding the criteria are listed in the Receivers Exceeding Criteria pull-down menu corresponding to the assigned land-use type of each receiver.

6. Select any receiver from the *Receiver(s) Exceeding Criteria* pull-down menu to view the amount by which the receiver noise level exceeds the relevant criteria. This appears in the *Noise Level Exceeding Criteria* textbox when you select the receiver.

7. View the notice, which provides a final statement telling you whether amelioration is required.

Noise Amelioration is Required

8. Click *Finish* to return to the Back-drop screen.

To import and edit single-point receiver noise data

You can select a file of single-point receiver noise levels, import them into the DST, assign a landuse type and read the noise levels at each receiver. The DST assigns the project stage depending on the stage of the project being assessed. The project stage can be either Assessment or Amelioration.

The file types that can be imported are output files from traffic noise modelling software such as SoundPlan or TNM. The output files contain single-point receiver noise levels and are imported as Excel files.

To start:

1. In the Import Single-Point Receiver Data frame select the desired **Path and Filename** if it is not already presented.

-Import Single Point Re	eceiver Data	
Path and Filename	D:\DST_v.1.0.a_Codes\Decision Support Tool\	ONRNoWall
Project Stage	Assessment	•
Receiver Type (Select All)	Existing Residences	
(Select All)	Existing Residences	
	Educational and Health Buildings	Import
	Parks and Recreational Areas	

- 2. Ensure that the project stage (Assessment or Amelioration) displayed in the Import Single-Point Receiver Data frame corresponds to the type of noise level data being imported.
- 3. In the Import Single-Point Receiver Data frame click on the *Receiver Type* pull-down menu and select the receiver type that applies to most receiver identifiers. The receiver type selected here will be applied to all single-point receiver identifiers.
- 4. Click the *Import* button to import the Single-Point Receiver Data.
- 5. In the Edit Single-Point Receiver Data frame select the receiver identifier to be edited from the *Receiver Identifier* pull-down menu.

Edit Single Point Rece	eiver Data —				
Receiver Identifier	R10	•	Noise Level 7	5 L10(1	8h) dB(A)
Receiver Type	R10 R11 R12 R13 R14 R15 R16		ces	-	Graph
	R17	~			

6. Select the desired Receiver Type for the selected receiver identifier from the **Receiver** *Type* pull-down menu.

-Edit Single Point Rece	eiver Data
Receiver Identifier	R10 Voise Level 75 L10(18h) dB(A)
Receiver Type	Existing Residences
	Existing Residences
	Educational and Health Buildings
	Parks and Recreational Areas Graph

- 7. View the noise level corresponding to the selected receiver identifier in the *Noise Level* textbox.
- 8. Click *Graph* to view a graph of all the receiver identifier noise levels.

- 9. Click *Finish* to return to the Import/Edit window.
- 10. Click *Finish* to return to the Assessment Against the Relevant Criteria window.

To identify and select a range of possible treatment options

You can identify possible treatment options for the noise project. You can determine the possible noise reduction values and read qualifying comments for each treatment option. *These are envelope values only* and are to be verified before making a decision. The selected options will be registered in the Selected Treatment Options textbox.

To start:

1. Click **Option Identification** on the menu bar to open the Option Identification window.

2. Select a Treatment Option from the *Possible Treatment Options* pull-down list.

Possible Treatment Options	
Pavement Surface	•
Noise Barrier - Noise Mound	~
Pavement Surface	
Building Treatment	
Sign Posted Speed Reduction	
Noise Barrier & Pavement Surface	≡
Noise Barrier & Building Treatment	
Pavement Surface & Building Treatment	
Noise Barrier & Pavement Surface & Building	1 🗸

3. Compare the possible noise reductions with the maximum noise reduction required (displayed in the Traffic Noise Criteria and Amelioration Requirement section of the Backdrop screen) and read qualifying comments about the option.

-Selection of Possible Treatment Options	
Possible Treatment Options	The possible poise reduction is from 0 dB to 7 dB
Selected Treatment Options	Treatment Option - Comments
Pavement Surface	Pavement surface treatment is only effective when road tyre noise is a significant component of road traffic noise. Road tyre noise is the dominant component of road traffic noise at traffic speeds of 70km/n. Achievable traffic noise level reductions are relative to the existing pavement surface types.

- 4. Click the **Possible Treatment Options** pull-down list and select a noise amelioration option. You can select as many different treatment options as you like.
- 5. Click on the selected treatment option in the **Selected Treatment Option** pull-down list to remove it from the selected list.
- 6. Click *Finish* to return to the Back-drop screen.

To conduct an amelioration analysis

You can see whether a selected treatment option is technically valid. The treatment options that can be assessed include noise barriers, pavement resurfacing and building treatment. It is also possible to combine the noise reductions resulting from different treatments. Building treatment, if included in a combination of treatments, must be the last treatment combined. This is because building treatment is assessed against an internal standard which cannot be converted back to, or compared with, external criteria.

To conduct an amelioration analysis of a non-combined treatment

To start:

- 1. Pull down the *Amelioration Analysis* menu bar.
- 2. Click on *Inside the Road Reserve.*
- 3. Click on *Noise Barrier* to open the Amelioration Analysis Window > Noise Barrier.

	Road Traffic Noise Management Decision Support Tool (v. 1.0.a)							
1	File	Noise Impact and Code Assessment	Option Identification	Amelioration Analysis	Feasibility	Analysis	Cost Analysis	Benefit Analysis
				Inside the Road Re	serve 🔹 🕨	Noise	Barrier	1
				Outside the Road R	eserve 🕨	Paven	nent Surface	

or

- 2. Click on *Inside the Road Reserve.*
- 3. Click on *Pavement Surface* to open the Amelioration Analysis Window > Pavement Surface.

or

- 2. Click on *Outside the Road Reserve.*
- 3. Click on *Building Treatment* to open the Amelioration Analysis Window > Building Treatment.

Road Traffic Noise Management Decision Support Tool (v. 1.0.a)									
💹 F	ile	Noise Impact and Code Assessment	Option Identification	Amelioration Analysis	Feasibility	Analysis	Cost Analysis	Benefit Ar	nalysis
				Inside the Road Re	serve 🕨 🕨	1			
				Outside the Road R	eserve 🕨	Buildin	ig Treatment		
Г						Detaile	ed Building Treat	ment	

4. Click *Import, Select* or *Assess* in the Assessment of Ameliorated Noise Levels frame depending on whether the treatment option is a noise barrier, pavement surface or building treatment.

Clicking **Import, Select** or **Assess** opens the window corresponding to the selected treatment. Once the selected treatment has been processed and the treatment window closed, the ameliorated noise levels are compared to the relevant criteria. The single-point receiver identifiers with noise levels still exceeding the criteria are listed in the pull-down list corresponding to the assigned land-use type of each single-point receiver identifier.

5. Select a receiver in the *Receiver(s) Exceeding Criteria* pull-down list to view the amount by which the receiver noise level exceeds the criteria in the Noise Level Exceeding Criteria textbox.

-Assessment of	Ameliorated Noise Levels				
	Receiver Type	Receiver(s) Cxceeding Criteria	Noise Level Exceeding Criteria dB	Crite	ria dB(A)
()	Existing Residences	-	0	68	L10 (18h) - Facade Corrected
Import	Education and Health Buildings		0	55	L10 (1h) - Internal
	Parks and Recreational Areas		0	63	L10 (12h) - Free Field

- 6. View the notice below the Assessment of Amelioration Noise Levels frame. This provides a final statement telling you whether the noise amelioration was satisfactory or whether further amelioration is required.
- 7. Click *Finish* to return to the Back-drop screen.

To conduct amelioration analysis of combined treatments

If you have conducted an amelioration analysis and there remains at least one receiver exceeding the criteria, you can combine the treatment option with another. Building treatment, if included in a combination of treatments, must be the last treatment combined. This is because building treatment is assessed against an internal standard which cannot be converted back to, or compared with, external criteria.

To start:

1. With the Amelioration Analysis window open, click the radio button of the desired treatment option to be combined with the previous treatment option in the *Combine With* frame. You cannot combine two treatment options that are of the same type.

Combine with
C Noise Barrier Treatment
Pavement Surface Treatment
C Building Treatment

2. Click *Import, Select* or *Assess* in the Assessment of Ameliorated Noise Levels frame depending on whether the treatment option is a noise barrier, pavement surface or building treatment.

Clicking **Import, Select** or **Assess** opens the window corresponding to the selected treatment. Once the selected treatment has been processed and the treatment window closed the ameliorated noise levels are compared to the relevant criteria. The single-point receiver identifiers with noise levels still exceeding the criteria are listed in the pull-down list corresponding to the assigned land-use type of each single-point receiver Identifier.

3. Select a receiver in the *Receiver(s) Exceeding Criteria* pull-down list to view the amount by which the receiver noise level exceeds the criteria in the Noise Level Exceeding Criteria textbox.

- 4. View the notice below the Assessment of Amelioration Noise Levels frame which provides a final statement telling you whether the noise amelioration was satisfactory or whether further amelioration is required.
- 5. If after you have conducted the second amelioration analysis there still remains at least one receiver exceeding the criteria, you can repeat this process and further combine the treatment options with another.
- 6. Click *Finish* to return to the Back-drop screen.

To select a proposed pavement surface type

To start:

- 1. From the Amelioration Analysis window, click *Select* in the Assessment of Ameliorated Noise Levels frame to open the Pavement Surface window.
- 2. View the existing pavement surface type in the Pavement Surface Type frame.
- 3. Click the Proposed Pavement Surface Type pull-down list and select a pavement surface type.

4. View the correction factor in the Pavement Surface Type frame.

Pavement Surface Type	
Existing Pavement Surface Type	Dense Graded Asphalt
Proposed Pavement Surface Type	Open Graded Asphalt
Correction Factor	-2 dB

5. Click *Finish* to return to the Amelioration Analysis window.

To apply building treatment to all receivers exceeding criteria

To start:

1. From the Amelioration Analysis window click **Assess** in the Assessment of Ameliorated Noise Levels frame to open the Building Treatment window

To change the building type corresponding to a receiver identifier:

- 2. Click on the *Receiver Identifier* pull-down list to select a receiver identifier.
- 3. Click on the *Building Type* pull-down list to define a building type for the selected receiver identifier.

Building Constructi	ion Type	
Receiver Identifier	Building Type	
R10 🔻	Existing Residences	•
	Existing Residences	
	Educational and Health Buildings	

- 4. View the traffic noise level corresponding to the selected receiver identifier.
- 5. View the construction category required in order that the selected receiver identifier achieves the Indoor sound level recommended in the Australian Standards, AS/NZS 2107–2000.

6. Click *Finish* to return to the Amelioration Analysis window.

option design sufficiently satisfies the preferred ameliorative strategy criteria.

To compare treatment options with the preferred ameliorative strategies You can compare treatment options with the preferred ameliorative strategies defined in the Road Traffic Noise Management: Code of Practice. The criteria used to define the preferred ameliorative strategies are listed in the treatment option frame. It is up to you to decide whether a treatment

To start:

1. Click on the *Feasibility Analysis* menu bar to open the Feasibility of Options window.

Road Traffic Noise Management Decision Support Tool (v. 1.0.a)

File Noise Impact and Code Assessment Option Identification Amelioration Analysis Feasibility Analysis Cost Analysis Benefit Analysis

2. Click on the **Option Description** pull-down list and select the treatment option to be assessed.

Project ID. No.	97/900/5	Option ID. No.	0
Option Description	Noise Barrier 1	•	
Relevant Criteria	Noise Barrier 1 Pavement Surface 1 Building Treatment 1		Additional Design Detail
Road Development Type	Upgrading Existing Roads	•	

- 3. If the treatment option is a noise barrier, then click on the *Additional Design Detail* button and view the design parameters.
- 4. Check the criteria listed in the treatment option frame to determine whether the selected treatment option design parameters sufficiently satisfy the preferred ameliorative strategy criteria.

5. If you consider that the selected treatment option design sufficiently satisfies the preferred ameliorative strategy criteria, click the **Yes** radio button corresponding to the statement, **Is** *the option preferred and feasible*?

Is the option preferred and feas	ible ?	C No	
Preferred and Feasible Options	Noise Barrier1 Building Treatment1		

- 6. To remove a treatment option from the preferred and feasible list, click on the option in the list to highlight it and then click the **No** radio button corresponding to the statement, **Is the option preferred and feasible?**
- 7. Repeat the process for all treatment options listed in the Option Description pull-down list.
- 8. Click *Exit* to return to the Back-drop screen.

To import noise barrier design details

You can select a file of noise barrier design details and import them into the DST. The file types

that can be imported are output files from traffic noise modelling software such as SoundPlan or TNM. The output files contain noise barrier coordinates and are imported as Excel files.

To start

1. Click on the *Additional Design Detail* button from the Feasibility of Options window.

Project ID. No.	97/900/5	Option ID. No.	0
Option Description	Noise Barrier 1		ĺ
Relevant Criteria	QLD Main Roads	•	Additional Design Detail
Road Development Type	Upgrading Existing Roads	•	

2. Before the Noise Barrier Design Details window opens, the **Open** window appears enabling you to locate and select the file from which the noise barrier design details will be imported. In the Noise Barrier Design Details window the desired Path and Filename are displayed.

Treatment Option: I	Noise Barrier 1	
Path and Filename	S:\DST_v.1.0.a_Codes\Decision Support Tot	

- 3. Click the *Import* button to import, calculate and display noise barrier design details such as number of barrier segments, barrier segments lengths and heights.
- 4. View the segment lengths and heights by clicking on the up and down buttons in the Barrier Segment frame.

Barrier Segment			
Height	3.5 (m) 2.5 💌	Length	110 (m) 118 💌

5. Click *Finish* to return to the Feasibility of Options window.

To develop a concept costing for a treatment option

You can develop a concept costing for each selected treatment option based on design parameters such as overall dimensions and material types. Other items also included in the costing are project management, survey and design, land acquisition, service relocation, and site-specific works. You can set a contingency value as a percentage of the total cost to allow for unexpected costs. You can also enter the cost of items not listed in the Cost frame in the Miscellaneous Items textbox. To start:

1. Click on the **Cost Analysis** menu bar to open the Concept Costing window.

	Roa	d Traffic Noise Management D	ecision Support T	ool (v. 1.0.a)			
1	File	Noise Impact and Code Assessment	Option Identification	Amelioration Analysis	Feasibility Analysis	Cost Analysis	Benefit Analysis

2. Click on the **Option Description** pull-down list and select the treatment option to be evaluated.

Project ID. No.	97/900/5	
Option Description	Noise Barrier 1	
	Noise Barrier 1	
	Pavement Surface 1	
	Building Treatment 1	

3. Click on the tab corresponding to the selected treatment option and select the appropriate item(s) from the pull-down menu to evaluate the treatment construction cost.

	A. Project Manage	ernent		0	\$	
	B. Survey and De	sign		0	\$	
	C. Land Acquisitio	n		0	\$	
	D. Service Reloca	tion		0	\$	
	E. Construction of	Noise Barriers		0	\$	
	F. Road Resurfaci	ing		0	\$	
	G. Architectural Me	easures		0	\$	
	H. Landscaping			0	\$	
	I. Site Specific Civi	il Works		0	\$	
	J. Miscellaneous			0	\$	
	K. Sub-total			0	\$	
	L. Contingency			10	%	
	M. Total			0	\$	
`ost	Noise Barriers	Resurfacing	Architectural Measures	Other In	formation	
1000	The second secon					

- 4. Click on the **Cost Tab** to return to the Cost Frame.
- 5. Enter costs for Project Management, Survey and Design, Land Acquisition, Landscaping, Site-specific Works, and Miscellaneous items.
- 6. Enter a percentage value for the Contingency value to change it from the default value of 10%.

The Subtotal and Total values are automatically calculated.

7. Click *Exit* to return to the Back-drop screen.

To cost the construction of noise barriers

You can estimate the construction cost of a noise barrier based on the length, height and material used. You need to either import the noise barrier design details from the Feasibility of Options section which will automatically be displayed in the Noise Barriers frame, or manually input the length and heights of each noise barrier segment.

To start:

1. Click the *Noise Barriers* Tab, from the Concept Costing window.

Cost	Noise Barriers	Resurfacing	Architectural Measures	Other Information	

2. Click on the *Material* pull-down list and select a material type for each noise wall segment listed.

Noise Wall Segment	Length (m)	Height (m)	Material	
1	110	3.5		•
2	118	2.5	Concrete (colour and patterned)	^
3	61	4.5	Concrete (colour or patterned) Concrete (plain)	=
			Plywood Sawo Timber	
			Steeel Absorptive Transparent (Glass) 1m Height Earth Mound	~

3. The price per square metre and the segment cost are evaluated and displayed automatically.

Noise Wall Segment	Length (m)	Height (m)	Material	Price (\$/m2)	Cost (\$)
1	110	3.5	Plywood	195	75075
2	118	2.5	Plywood	195	57525
3	61	4.5	Plywood	195	53527

- 4. The sum of the cost of all barrier segments will be passed to Item E, *Construction of Noise Barriers*, on the Cost frame.
- 5. Click the *Cost Tab* to return to the Cost Frame.

To cost the resurfacing of a road

You can estimate the cost of resurfacing a road based on the road length, number of lanes and pavement surface type. You can enter the length of the road at the Site Information project stage

and you can determine the required pavement surface type at the Amelioration Stage of the process. You can change the default lane width which has been set at 5 m by editing the Pavement Width Column of the Resurfacing frame.

To start:

1. Click the *Resurfacing* Tab from the Concept Costing window.

Cost Noise Barriers Resurfacing Architectur	al Measures Other information

2. Click on the *Material* pull-down list and select a pavement surface type.

Resurface segment	From	То	Length (m)	Pavement Width (m)	Material	Pr
1	Jinker Tk	Keong Rd	475	10	_	
					Bitumen Seal (16-20mm) Bitumen Seal (5-14mm) Bitumen Seal (5mm) Concrete	
					Dense Graded Asphalt Stone Mastic Asphalt Boral Low Noise Asphalt Open Graded Asphalt	

3. The price per square metre and the cost are calculated and displayed automatically.

Resurface segment	From	То	Length (m)	Pavement Width (m)	Material	Price (\$/m2)	Cost (\$)	^
1	Jinker Tk	Keong Rd	475	10	Open Graded Asphalt	25	118750	

- 4. The sum of the cost of resurfacing will be passed to Item F, *Road Resurfacing*, on the Cost frame.
- 5. Click the *Cost Tab* to return to the Cost Frame.

To cost the treatment of buildings

You can estimate the cost of building treatment based on the building type and construction category required to ensure satisfactory indoor sound levels. You can define the building type at the Assessment against Relevant Noise Criteria stage of the process. You can determine the required construction category at the Amelioration Stage of the process.

To start:

1. Click the Architectural Measures Tab from the Concept Costing window.

Cost Noise Barriers Resurfacing Architectural Measures Other information					
	Cost	Noise Barriers	Resurfacing	Architectural Measures	Other information

2. Click on the **Construction Category** pull-down list and select a construction category for each property listed. The construction category has been determined at the Amelioration Stage of the process.

Property ID	Building Type	Construction Category	Pric
R10	Residential Buildings	_	
R11	Residential Buildings	Category 4	
R3	Residential Buildings	Category 2 Category 3	
R7	Residential Buildings	Category 1	-
R9	Residential Buildings		

3. The price per property as a lump sum, based on the construction category and building type, are displayed automatically.

Property ID	Building Type	Construction Category	Price (\$	/Property)	Cost (\$)	
R10	Residential Buildings	Category 3		25000	25000	
R11	Residential Buildings	Category 3		25000	25000	
R3	Residential Buildings	Category 3		25000	25000	
R7	Residential Buildings	Category 3		25000	25000	
R9	Residential Buildings	Category 3		25000	25000	

- 4. The sum of the building treatment costs will be passed to Item G, *Architectural Measures*, on the Cost frame.
- 5. Click the *Cost Tab* to return to the Cost frame

To analyse the benefit of a treatment option

Many of the parameters used to measure benefits have already been evaluated and so when you open the Benefit Analysis window they are displayed in the Benefit Matrix. You can view a table in which the cost and benefit factors are listed for a range of ameliorative treatment options. You can also assign a number of positive environmental and positive social factors to a treatment option.

To start:

1. Click on the *Benefit Analysis* menu bar to open the Benefit Analysis window.

A	Roa	d Traffic Noise Management E	ecision Support T	fool (v. 1.0.a)				
A	File	Noise Impact and Code Assessment	Option Identification	Amelioration Analysis	Feasibility Analysis	Cost Analysis	Benefit Analysis	

2. View the Benefit Matrix to assess the benefit of alternative treatment options. The parameters presented in the Benefit Matrix include Cost, Number of Receivers with Noise

Levels Reduced from Assessment to Target Levels, Cost/Receiver (cost per receiver) and the Maximum Noise Level Reduction.

Benefit Matrix									
Donone matrix									
			Number of Levels Re to Target I	Receivers wit duced from As Levels	th Noise sessmei	nt			
					Health	Cost/	Maximum Noise	Level Reduction	
Option ID	Option Description	Total Cost (\$)	Existing	Parks and	Buildin	gs Receiver	External	Internal	
			Ext. Int.	s Recreation	Ext. I	nt. \$/Rec.	dB	dB	
1	Noise Barrier1	82582	5 0	0	0	0 16516	11 L10(18h)	0	
C 2	Pavement Surface1	130625	1 0	0	0	0 26125	2 L10(18h)	0	
С 3	Building Treatment1	27500	05	0	0	0 5500	0	32 Leq(1h)	

3. Click on the *Economic, Environmental and Social Benefit Factors* tab to view the table of cost and benefit factors.

Benefit Matrix	Economic, Environmental and Social Impact Matrix	

- 4. Click on the *Benefit Matrix* tab to return to the Benefit Matrix frame.
- 5. Click the radio button to select a treatment option.
- 6. Click on the *Positive Social Factors* pull-down menu and select a positive factor. Select as many factors as apply to the treatment option.

Positive Social Factors		Positive Environmental Factors
Safety Requirements	•	Air Circulation 💌
Safety Requirements		
Maintenance/Access Requirements		Selected
Preserving Views		
Public Amenity		
Visual Considerations		
Community Benefit		
Privacy and Security		

7. Click on the **Positive Environmental Factors** pull-down menu and select a positive factor. Select as many factors as apply to the treatment option.

— Бенетіс ма			Numb Level to Tar	er of F s Redu get Le	Receivers wit uced from As wels	h Noise sessm	e ent					
			Eviatio		Dorko opd	Healt	h	Cost/ Receiver	Maximum Noise I	_evel Reduction	Positive	Positive
Option ID	Option Description	Total Cost (\$)	Resid	iy ences	Recreation	Buildi Ext.	ings Int.	*****	External	Internal	Social Factors	Env. Factors
			Ext.	Int.				ъ/кес.	аÐ	αÐ	1 000010	1 401010
⊙ 1	Noise Barrier1	82582	5	0	0	0	0	16516	11 L10(18h)	0	3	2
C 2	Pavement Surface1	130625	1	0	0	0	0	26125	2 L10(18h)	0	0	0
C 3	Building Treatment1	27500	0	5	0	0	0	5500	0	32 Leq(1h)	0	0
Option ID C 1 C 2 C 3	Option Description Noise Barrier1 Pavement Surface1 Building Treatment1	Total Cost (\$) 82582 130625 27500	Existii Resid Ext. 5 1 0	ng ences Int. 0 0 5	Parks and Recreation 0 0	Healt Buildi Ext. 0 0	h Ings Int. 0 0	Cost/ Receiver \$/Rec. 16516 26125 5500	Maximum Noise I External dB 11 L10(18h) 2 L10(18h) 0	Level Reduction Internal dB 0 0 32 Leq(1h)	Positive Social Factors 3 0 0	Positive Env. Factors 2 0 0

The number of positive factors selected will be displayed in the Positive Social and Environmental

Factors columns of the Benefit Matrix respectively.

8. Click *Finish* to return to the Back-drop screen.

Section 3

Troubleshooting

Project stage	Trouble	Possible causes	Solution
Assessment Against Relevant Noise Criteria	The new road criterion is 60 but should be 63.	 Background noise level not input. Background noise level incorrectly input as a value less than 55. 	Input correct noise level which is greater than 55.
Assessment Against Relevant Noise Criteria	All receiver noise levels are higher/lower than expected.	Receiver identifiers may have had their land-use type incorrectly assigned.	Check that the land-use type has been correctly assigned to all receiver Identifiers.
Amelioration Analysis	The Amelioration Analysis window does not open when a treatment has been selected.	An existing treatment option has been selected and the amelioration method that has been selected is of a different type to that of the existing treatment.	 Select a new treatment option and select the desired amelioration method. Select an existing treatment option and select the amelioration method that is the same as has been applied to the selected existing treatment.
Amelioration Analysis	Noise barrier receiver noise levels don't satisfy criteria.	 The wrong file could have been imported. The road development type may have changed from that assigned during the assessment. 	 Check that the correct file has been imported. Check that the road development type has not changed from that assigned during the assessment.
Feasibility of Options	Clicking Feasibility Analysis from the Back- drop screen does not open the Feasibility of Options window.	The Feasibility of Options window will not open until at least one amelioration analysis has been completed.	Conduct at least one amelioration analysis before opening the Feasibility of Options window.
Feasibility of Options	Clicking Noise Barrier Design Details button does not open Noise Barrier Design Details window.	Treatment option selected does not include a noise barrier.	Select a treatment option that includes a noise barrier.
Concept Costing Details — Noise Barrier tab selected	Noise wall segments, lengths and heights not displayed.	 Treatment option selected does not include a noise barrier. Noise barrier design 	 Select a treatment option that includes a noise barrier. Import noise barrier

		details have not been imported.	design details from the feasibility analysis stage.
			 Enter noise barrier design details manually.
Concept Costing Details — Architectural Measures tab selected	Property ID and Building Type not displayed.	1. Treatment option selected does not include a building treatment.	1. Select a treatment option that includes a building treatment.
Concept Costing Details — Resurfacing tab selected	Resurface segment, From, To, Length and Pavement Width not displayed	1. Treatment option selected does not include resurfacing.	1. Select a treatment option that includes resurfacing.
Concept Costing details — Cost tab selected	Data entered into textboxes is not automatically added to subtotal and total.	Data updates when another textbox is clicked.	Click another textbox in the list to update subtotal and totals.
Benefit Analysis	When adding social and environmental factors they are added to the wrong treatment option.	The treatment option to which the benefit factors are to be added has not been selected.	Select the treatment option to which the benefit factors are to be added.

Noise Management in Urban Environments

2002-004-В

DST Verification

Case Studies

February 2005

Research team

Dr. Saman de Silva, RMIT University Dr. Li Chen, RMIT University Mr. Philip Douglas, RMIT University Mrs. Julie Peters, Queensland Department of Main Roads

Introduction

The results of three case studies that have been assessed using the Decision-support Software Tool (DST) are presented in this report. Each of the three case studies was also assessed manually by the Queensland Department of Main Roads (QDMR). The reasons for conducting the case studies were to:

- demonstrate the capability of the DST
- demonstrate that the DST can be used to efficiently conduct cost-benefit analyses of noise amelioration strategies, and that it is robust in terms of alternative treatment options and their respective costs
- calibrate the DST by comparing cost profiles generated using the DST with those produced by the QDMR.

The road traffic noise management projects representing the case studies are:

- Case Study 1: Old Northern Road between Jinker Track and Keong Road, Brisbane
- Case Study 2: Mt Lindesay Highway between Kantenna Street and Talinga Drive, Brisbane
- Case Study 3: Pacific Motorway between Peachey Road Street and Pimpama River, Ormeau

The Old Northern Road case study involves an existing four-lane road (no road works), and all the noise-sensitive receivers were existing residences. The Pacific Motorway involves noise-sensitive receivers with both existing residences, and parks and recreational area land-use types. The Mt Lindesay Highway case study is particularly interesting because it involves noise-sensitive receivers of all three land-use types: existing residences, educational and health buildings, and parks and recreational areas.

Case study 1: Old Northern Road between the Jinker Track to Keong Road, Albany Creek, Queensland

Noise study area

The noise study area to be investigated in this case study runs along the Old Northern Road between the Jinker Track and Keong Road, Albany Creek, Queensland. The road consists two double lanes with residential land uses on both sides of the road, and educational land use, Albany Hills Primary School, on the west side of the road. The traffic flow and road surface data are:

Old Northern Road:

AADT	22,893
% commercial vehicles	6.0%
Growth rate (cumulative)	4.27% p.a.
Posted traffic speed	70 km/h
Existing road surface type	dense-grade asphalt (DGA)

Noise barriers have been constructed for the residences to the west side of Old Northern Road within the noise study area. The existing noise barriers are typically around 1 m in height.

The road authority, QDMR, has conducted a site visit to determine the existing noise levels at Meyumi Ct, Albany Creek, for both the main residence and the 'granny flat'. The QDMR's noise

monitoring recorded a noise level of 72.5 dB(A) $L_{A10 (18 \text{ hours})}$ at the main residence and 70.6 dB(A) $L_{A10 (18 \text{ hours})}$ at the granny flat.

Noise impact and code assessment

According to the relevant noise criteria, the study area is defined as an existing road (no road work). The noise receivers in the study area are defined as existing residences. An external level, 68 dB(A) $L_{A10(18 \text{ hours})}$, is recommended as the noise criterion for adjacent residential properties of the study area.

Table 1-1 lists existing noise levels predicted by SoundPlan, a software package based on the CoRTN method.

Receiver no:	Land-use type	Predicted noise level dB(A)	Descriptor
R1	Existing residences	66	$L_{A10(18 \text{ hours})}$
R2	Existing residences	63	$L_{A10(18 \text{ hours})}$
R3	Existing residences	71	LA10(18 hours)
R4	Existing residences	65	LA10(18 hours)
R5	Existing residences	66	LA10(18 hours)
R6	Existing residences	67	$L_{A10(18 \text{ hours})}$
R7	Existing residences	73	$L_{A10(18 \text{ hours})}$
R8	Existing residences	73	$L_{A10(18 \text{ hours})}$
R9	Existing residences	72	$L_{A10(18 \text{ hours})}$
R10	Existing residences	74	$L_{A10(18 \text{ hours})}$
R10 Granny	Existing residences	75	$L_{A10(18 \text{ hours})}$
R11	Existing residences	69	$L_{A10(18 \text{ hours})}$
R12	Existing residences	59	LA10(18 hours)
R13	Existing residences	65	$L_{A10(18 \text{ hours})}$
R14	Existing residences	68	$L_{A10(18 \text{ hours})}$
R15	Existing residences	68	$L_{A10(18 \text{ hours})}$
R16	Existing residences	64	$L_{A10(18 \text{ hours})}$
R17	Existing residences	64	$L_{A10(18 \text{ hours})}$
R18	Existing residences	65	$L_{A10(18 \text{ hours})}$
R19	Existing residences	61	$L_{A10(18 \text{ hours})}$
R20	Existing residences	62	LA10(18 hours)

Table 1-1: Predicted external levels of the noise receivers, Old Northern Road

Note: * Road surface type is dense-grade asphalt (DGA)

** Receivers exceeding their relevant criterion have been highlighted in bold type.

Out of 12 receivers on the east side of Old Northern Road, from R1 to R11, five receivers were predicted to exceed the noise criterion, 68 dB(A) $L_{A10 (18 \text{ hours})}$. The highest $L_{A10 (18 \text{ hours})}$ exceeded the criterion by 7 dB(A). So, the "Noise Ameliorative is Required" result was concluded by using the DST for the noise study area of Old Northern Road.

Option identification

For reductions of 7 dB(A) in external noise level and 17 dB(A) in internal noise level, four potential ameliorative options for the study area were selected for further study and are shown in Table 1-2.

Option ID no:	Within/Outside road reserve option	Individual/Combined option	Option description
1	Within	Individual	Noise barrier — noise wall/noise mound
2	Within	Combined	Noise barrier — noise wall/noise mound & Pavement surface
3	Outside	Individual	Building treatment
4	Within & outside	Combined	Noise barrier — noise wall/noise mound & Building treatment

Table 1-2: Selected potential ameliorative options, east side of Old Northern Road

Amelioration analysis

For the potential ameliorative option, Noise barrier — noise wall/noise mound, the modelling results processed by SoundPlan indicated four possible options listed in Table I-3.

For the potential ameliorative options related to building treatment, the built-in evaluation process is based on the Australian Standard 3671 and the results are listed in Table 1-3 as well.

|--|

Within-road reserve								
Option 1: Noise barr	ier — noise wall							
Surface type: Dense	-grade asphalt (DG	A)						
Barrier no.	Height (m)	Length	Area					
		(m)	(m ²)					
Barrier 1	4.5	61	275					
Barrier 2	3.5	111	387					
Barrier 3	2.5	118	296					
		Total barrier length	Total barrier area					
		290 m	959 m ²					
Option 2. Noise barrier — noise wall & Pavement surface Surface type: Open-grade asphalt (OGA)								
Barrier no:	Height (m)	Length	Area					
		(m)	(m ²)					

Barrier 1	4	61	245
Barrier 2	2	117	234
		Total barrier length	Total barrier area
		178	479
Option 3. Noise barr	ier — noise wall & Pa	vement surface	
Surface type: Stone	mastic asphalt (SMA)	
Barrier no:	Height (m)	Length	Area
		(m)	(m ²)
Barrier 1	4	61	245
Barrier 2	3	98	294
Barrier 2	2	131	262
		Total barrier length	Total barrier area
		290	801
Option 4. Noise barr Surface type: Dense	ier — noise mounds -grade asphalt (DGA)	
Mound no:	Height (m)	Length	
		(m)	
Mound 1	4.5	61	
Mound 2	3.5	111	
Mound 3	2.5	118	
		Total mound	
		length	
		290	
Outside-road reser	rve		
Option 5: Building tre	eatment 1		
Surface type: Dense	-grade asphalt (DGA)	
Receiver no:	Building type	Construction category	
R3	Residential	3	
R7	Residential	3	
R8	Residential	3	
R9	Residential	3	
R10	Residential	3	
R11	Residential	3	
Combination of trea Option 6: Pavement Surface type: Open-	atment of within- an surface & building tre	d outside-road reserve eatment	9
		Construction	
Receiver no:	Building type	category	
R3	Residential	3	

R7	Residential	3	
R8	Residential	3	
R9	Residential	3	
R10	Residential	3	

Feasibility of options

The on-site investigation showed that mounding is not feasible for the study area due to actual terrain features. Hence, the feasibility of possible ameliorative options is shown in Table 1-4.

Table 1-4: Feasible ameliorative options, east side of Old Northern Road

Within-road reserve	Feasible/Constructable
Option 1: Noise barrier — noise wall	Yes
Surface type: Dense-grade asphalt (DGA)	
Option 2. Noise barrier — noise wall & Pavement surface	Yes
Surface type: Open-grade asphalt (OGA)	
Option 3. Noise barrier — noise wall & Pavement surface	Yes
Surface type: Stone mastic asphalt (SMA)	
Option 4. Noise barrier — noise mound	No
Surface type: Dense-grade asphalt (DGA)	
Outside-road reserve	
Option 5: Building treatment	Yes
Surface type: Dense-grade asphalt (DGA)	
Combination of treatments of within- and outside-road reserve	
	Vee
Option 6: Building treatment & Pavement surface	res

Concept costing

The five feasible ameliorative options developed in the previous sections have been evaluated in terms of concept costs. A cost comparison study of the five options has been carried out and is presented in Table 1-5.

Table 1-5: Concept costing of the five feasible ameliorative options, east side of Old Northern Road

Option ID no:	1	2	3	4	5
Option description	Noise barrier (plywood)	Pavement surface (OGA) & Noise barrier (plywood)	Pavement surface (SMA) & Noise barrier (plywood)	Building treatment	Pavement surface (OGA) & Building treatment
	0.750	0.750	0.750	0.750	0.750
A. Project Management (\$)	9,753	9,753	9,753	9,753	9,753
B. Survey and Design (\$)	56,056	56,056	56,056	56,056	56,056
C. Land Acquisition (\$)	0	0	0	0	0
D. Service Relocation (\$)	0	0	0	0	0
E. Construction of Noise	186,128	93,210	156,000	0	0

M. Total (\$)	351,969	380,384	449,453	237,390	415,353
L. Contingency (%)	10	10	10	10	10
K. Subtotal (\$)	319,972	345,804	408,594	215,809	377,594
J. Miscellaneous (\$)	0	0	0	0	0
I. Site-specific Civil Works (\$)	55,535	55,535	55,535	0	55,535
H. Landscaping (\$)	12,500	12,500	12,500	0	12,500
G. Architectural Measure (\$)	0	0	0	150,000	125,000
F. Road Resurfacing (\$)	0	118,750	118,750	0	118,750
Barriers (\$)					

It is assumed that for all five options, the costs of the items, Project Management, and Survey and Design, are the same. The costs of items, Landscaping, and Site-specific Civil Works, are the same for the amelioration options with noise barrier or/and road resurfacing.

Benefit analysis

A range of criteria are used to evaluate and compare noise ameliorative options in terms of benefits. Some, such as costs, are readily expressed in dollar terms, and used in economic benefit evaluation. Some, such as environmental and social benefits, are not readily expressed in dollar terms and can only be presented in relative terms for comparisons between treatment options.

Table 1-6 shows the dollar benefits arising from implementing the feasible ameliorative options for the noise study area.

Option	Option	Number of receivers with noise levels reduced from assessment to target levels, dB						Maximum noise level reduction (dB)	
ID no:	description	Exis reside	sting ences	Parks and recreation	Educ and h build	ation ealth ings	Cost/receiver (\$/rec.)		
		Ext.	Int.		Ext.	Int.		Ext.	Int.
1	Noise barrier (plywood)	6	0	0	0	0	58,662	13.2 dB L _{A10(18} hours)	0
2	Pavement surface (OGA) & Noise barrier (plywood)	6	0	0	0	0	63,397	15.4 dB L _{A10(18} hours)	0
3	Pavement surface (SMA) & Noise barrier (plywood)	6	0	0	0	0	74,909	15.7 dB L _{A10(18} hours)	0
4	Building treatment	0	6	0	0	0	39,565	0	22 dB L _{eq(1 hour)}
5	Pavement surface (OGA) & Building treatment	1	5	0	0	0	69,226	2 dB L _{A10(18} hours)	20 dB L _{eq(1 hour)}

Table 1-6: Benefit analysis of viable amelioration options, Old Northern Road

Table 1-7 shows the non-dollar benefits arising from implementing the relevant ameliorative options to the noise study.

Table 1-7: Non-dollar benefits from noise reduction arising from implementing ameliorative options at Old Northern Road

Cost bo	nofit Ecotoro	Ameliorative treatment options					
COSI-De		Within the	road reserve	Outside the road reserve			
Category	Factors	Pavement resurfacing	Noise barrier wall	Acoustic treatment of buildings			
Economic	Initial project costs	+ Moderate	– High	+ Low to moderate			
	Maintenance / operational costs	– Moderate	– Moderate	 Moderate (responsibility of property owner) 			
Environmental	Air Circulation	+ Nil impact	 Potential impact 	 May require mechanical ventilation /air exchange 			
	Shade effects	+ Nil impact	 Potential impact 	+ Nil impact			
	Fauna movements	+ Nil impact	 Potential impact 	+ Nil impact			

	Adverse operational impacts	+ Nil impact	+ Minimal impact	 Need to solve problems with ventilation & air- conditioning unit noise
	Visual aesthetics	+ Nil impact	 Potential impact 	+ Minimal impact
Social	Safety requirements	+ Surface drainage to be considered	 Site-specifics to be considered in design 	+ Nil impact
	Maintenance / access requirements	+ Nil impact	 Site-specifics to be considered in design 	+ Nil impact
	Preserving views	+ Nil impact	 Potential impact 	+ Nil impact
	Public amenities	+ Nil impact	 Restricts access in area 	 May restrict options to open and close windows & doors
	Visual considerations	+ Nil impact	 Site-specifics to be considered in design (incl. community art) 	+ Nil impact
	Community benefit	+ Provides benefit to local community and road users	+ Provides benefit to local community	 Restricts benefit to individual dwellings
	Privacy and security	+ Nil impact	 Site-specifics to be considered in design 	+ No direct impact

Note: + Represents potential advantages or nil impact – Represents potential disadvantages

Case study 2: Mt Lindesay Highway

Noise study area

The noise study area was located along the Mount Lindesay Highway between Kantenna Street and Talinga Drive in the Brisbane suburb of Park Ridge, Queensland. The two lane highway was proposed to be upgraded to a two lane divided road. Within the study area there are existing residences, commercial buildings, educational buildings and outdoor recreational areas. Noise ameliorative measures were not considered for those noise-sensitive receivers located on Main Roads owned land or commercial premises located within the study area. The traffic flow and road surface data were:

Mt Lindesay Highway:

AADT	35816 (North of Park Ridge Rd) & 24,972 (South of Park Ridge Rd)
% commercial vehicles	6.0%
Based on growth rate	2.5% p.a.
Assessment year	2012

Posted traffic speed 80 km/h

Existing road surface type dense-grade asphalt (DGA)

The road authority was the Brisbane City Council and the road development type was defined as upgrading an existing road.

Noise impact and code assessment

The relevant criterion for each property is determined based on the land use and the road development type. The noise level criteria were 68 dB(A) $L_{A10(18 \text{ hours})}$, 55 dB(A) $L_{A10(1 \text{ hour})}$ internal and 63 dB(A) $L_{A10(12 \text{ hours})}$ for existing residences, educational and health buildings, and parks and recreational areas respectively. The predicted noise levels after the road upgrade and land-use types for the receivers in the study area are presented in Table 2-1 (receivers exceeding their relevant criterion have been highlighted in bold type).

		Predicted		
Receiver no:	Land-use type	noise level dB(A)	Descriptor	
R2	Existing residences	61	L _{A10(18 hours)}	
R3	Existing residences	60	$L_{A10(18 \text{ hours})}$	
R4	Existing residences	59	$L_{A10(18 \text{ hours})}$	
R9	Existing residences	62	$L_{A10(18 \text{ hours})}$	
R10	Existing residences	63	$L_{A10(18 \text{ hours})}$	
R11	Existing residences	64	$L_{A10(18 \text{ hours})}$	
R12	Existing residences	65	$L_{A10(18 \text{ hours})}$	
R13	Existing residences	64	$L_{A10(18 \text{ hours})}$	
R14	Existing residences	63	$L_{A10(18 \text{ hours})}$	
R15	Existing residences	69	$L_{A10(18 \text{ hours})}$	
R16	Existing residences	68	$L_{A10(18 \text{ hours})}$	
R17	Existing residences	67	$L_{A10(18 \text{ hours})}$	
R18	Existing residences	61	$L_{A10(18 \text{ hours})}$	
R19	Existing residences	67	$L_{A10(18 \text{ hours})}$	
R20	Existing residences	66	$L_{A10(18 \text{ hours})}$	
R21	Existing residences	61	$L_{A10(18 \text{ hours})}$	
R22	Existing residences	67	$L_{A10(18 \text{ hours})}$	
R26	Existing residences	59	$L_{A10(18 \text{ hours})}$	
R27	Existing residences	48	$L_{A10(18 \text{ hours})}$	

Table 2-1: Predicted external levels of noise receivers, Mt Lindesay Highway for the assessment year 2012

R38	Educational and health	59	L _{A10(1 hour)} - internal
R39	Educational and health	54	L _{A10(1 hour)} - internal
R40	Educational and health	52	L _{A10(1 hour)} - internal
R41	Educational and health	54	L _{A10(1 hour)} - internal
R42	Educational and health	54	L _{A10(1 hour)} - internal
R43	Educational and health	49	L _{A10(1 hour)} - internal
R44	Educational and health	54	L _{A10(1 hour)} - internal
R45	Educational and health	50	L _{A10(1 hour)} - internal
R46	Educational and health	57	L _{A10(1 hour)} - internal
R47	Educational and health	55	L _{A10(1 hour)} - internal
R48	Educational and health	56	L _{A10(1 hour)} - internal
R49	Parks and recreational areas	65	LA10(12 hours)
R50	Parks and recreational areas	59	LA10(12 hours)
R51	Parks and recreational areas	52	LA10(12 hours)
R56	Existing residences	67	L _{A10(18 hours)}
R58	Educational and health buildings	53	L _{A10(1 hour)} - internal
R59	Educational and health	55	L _{A10(1 hour)} - internal
R60	Educational and health buildings	56	$L_{A10(1 \text{ hour})}$ - internal
R61	Parks and recreational	62	L _{A10(18 hours)}
R62	Existing residences	65	$L_{A10(18 \text{ hours})}$

Note: *Road surface type is dense-grade asphalt (DGA).

**Receivers exceeding their relevant criterion have been highlighted in bold type.

The noise modelling revealed that with the upgraded road, six receivers would exceed their relevant criterion in the year 2012. One existing residence and one outdoor recreational area were found to exceed the criteria by 1dB and 2 dB respectively. Four educational buildings were found to exceed the criterion by 4, 2, 1 and 1 dB respectively. Accordingly it was found that noise amelioration was required.

Option identification

Seven options considered potentially capable of being used to ameliorate the noise levels within the study area were identified. The options are presented in the Table 2-2.

Option ID no:	ID no: Within/Outside road Individual/Combined reserve option option		Option description		
1	Within	Individual	Noise barrier — noise wall		
2	Within	Individual	Noise barrier — noise mound		
3	Within	Individual	Pavement surface		
4	Within	Combined	Noise barrier — noise wall & Pavement surface		
5	Within	Combined	Noise barrier — noise mound & Pavement surface		
6	Within & outside	Combined	Noise barrier — noise wall & Building treatment		
7	Within & outside	Combined	Noise barrier — noise mound & Building treatment		

Table 2-2: Selected potential options, Mt Lindesay Highway

The non-combined option of building treatment was not considered viable because one of the receivers represented an outdoor recreational area in which there was no building present and which could not be treated with the building treatment options available.

Amelioration analysis

The options considered to have the potential to satisfactorily ameliorate the noise levels in the study area were evaluated. Options 1 and 2 were evaluated using traffic noise modelling software, SoundPlan to determine the ameliorated noise levels and the barrier design details. There is no difference between the models for noise walls and mounds when using noise modelling software. The differences are assessed in terms of feasibility and constructability.

The ameliorated noise levels were imported into the DST and compared with the relevant criteria. Options 1 and 2 were found to be usable to reduce the noise levels to below the criteria. Three noise barriers were required to ameliorate the noise levels in the study area. The dimensions of the noise barriers are presented in Table 3. Noise barrier 1 is required to ameliorate the noise level at the existing residence R15. Noise barrier 2 is required to ameliorate the noise levels at the Park Ridge State Primary School buildings R38, R46, R48, and at the outdoor recreation area R49. Noise barrier 3 is required to ameliorate the noise level at the Park Ridge State High School building R60.

Option 3 was evaluated using the DST. Option 3 involved resurfacing the road pavement from dense-grade asphalt to stone mastic asphalt. When resurfacing involves these two pavement surface types the largest possible correction factor of -2dB is achieved. In this case it was found that the noise levels at all but one of the receivers exceeding the criteria (R38) could be reduced to that of their respective criterion. Accordingly Option 3, which involved only pavement resurfacing, was found to be not a technically viable option.

Options 4 & 5 involved a combination of a noise barrier and pavement resurfacing. By resurfacing the road pavement with stone mastic asphalt it was found that the receiver noise levels at the existing residence (R15) and at the Park Ridge State High School (R60) could be reduced to that of their relevant criteria. However it was found that by combining this treatment with a noise barrier to reduce the noise level at the Park Ridge State Primary School, all receiver noise levels could be reduced to that of their relevant criterion. The dimensions of the noise barrier segments in Options 4 & 5 are presented in Table 2-3.

Options 6 & 7 involved a combination of a noise barrier and building treatments. Building

treatments were applied to the existing residence R15, the Park Ridge State Primary School buildings R38, R46, R48 and the Park Ridge State High School building R60. The internal noise levels of all buildings treated were reduced to the relevant criterion. A noise barrier was constructed to reduce the noise level of the outdoor recreational area at the primary school. The dimensions of the noise barrier segments in Options 6 & 7 are presented in Table 2-3.

Within-road reserve	e		
Option 1 & 2: Noise	barrier — noise wal	l or noise mound	
Surface type: Dense	e-grade asphalt (DG	A)	
Barrier no.	Height (m)	Length	Area
		(m)	(m ²)
1	1.8	57	102.6
2a	4.5	59	265.5
2b	5	215	1075
2c	5 - 2	35	140
2d	2	69	138
3	3.0	210	630
		Total barrier length	Total barrier area
		645 m	2351.1 m ²

Table 2-3: Possible ameliorative option design parameters, Mt Lindesay Highway

Options 4 & 5. Noise barrier - noise wall or noise mound & Pavement surface
Surface type: Stone mastic asphalt (SMA)

,	1 (,		
Barrier no.	Height (m)	Length	Area	
		(m)	(m ²)	
1	2.5	42	105	
2	3.5	173	605.5	
3	2.5	35	87.5	
		Total barrier length	Total barrier area	
		250 m	798 m ²	

Combination of treatment of within- and outside-road reserve

Options 6 & 7: Noise	e barrier — noise wall	or noise mound and B	uilding treatment
Surface type: Dense	e-grade asphalt (DGA)	1	
Property ID	Building type	Construction category	
R15	Residential	3	
R38	Educational	2	
R46	Educational	2	
R48	Educational	2	
R60	Educational	2	
Barrier no.	Height (m)	Length	Area
		(m)	(m ²)
1	2.5	42	105

For Word 2000+

2 3	3.5 2.5	173 35 Total barrier length	605.5 87.5 Total barrier area	
		250 m	798 m ²	

Feasibility of options

The Noise barrier — noise wall design parameters associated with Options 1, 2, 4, 5, 6 and 7 were within the allowable limits set out in the Road Traffic Noise Management Code of Practice. As no other restrictions were found through site investigations the Noise barrier — noise wall options were all considered feasible and constructible. It was also found that there was sufficient width within the road corridor for the Noise barrier — noise mound options to be considered feasible and constructible.

The construction types and the condition of the Park Ridge State Primary and High Schools and the existing residence were found to be sufficient to ensure that building treatments would be effective in reducing the noise levels to their relevant criterion. Accordingly the building treatment components in Options 6 and 7 were considered feasible and constructible. The viable pavement resurfacing options (4 and 5) were found to be feasible and constructible. The feasibility/constructability statuses of all viable options are presented in Table 2-4.

	Feasible/Constructable
Within-road reserve	
Option 1: Noise barrier — noise wall	Yes
Surface type: Dense-grade asphalt (DGA)	
Option 2. Noise barrier — noise mound	Yes
Surface type: Open-grade asphalt (DGA)	
Combination of treatments of within- and outside-road	
reserve	
Option 4. Noise barrier — noise wall & Pavement surface	Yes
Surface type: Stone mastic asphalt (SMA)	
Option 5. Noise barrier — noise mound & Pavement surface	Yes
Surface type: Stone mastic asphalt (SMA)	
Option 6. Noise barrier — noise wall & Building treatment	Yes
Surface type: Dense-grade asphalt (DGA)	
Option 7. Noise barrier — noise mound & Treatment	Yes
Surface type: Dense-grade asphalt (DGA)	

Table 2-4: Amelioration option feasibility/constructability status, Mt Lindesay Highway

Concept costing

The Mt Lindesay Highway project has not yet been completed and so not all concept costing details were available for use in this report. The DST was used to generate construction, resurfacing and building treatment costs for the viable amelioration options and are presented in Table 2-5.

	0		,	,	0 ,	
Option ID no:	1	2	4	5	6	7
			Noise barrier	Noise barrier	Noise	Noise
Option description	Noise	Noise	 noise wall 	— noise	barrier —	barrier —
	barrier —	barrier —	(plywood) &	mound &	noise wall	noise
	noise wall	noise	Pavement	Pavement	(plywood) &	mound &
	(plywood)	mound	surface	surface	Building	Building
			(SMA)	(SMA)	treatment	treatment
A. Project Management						
(\$)						
B. Survey and Design (\$)						
C. Land Acquisition (\$)						
D. Service Relocation (\$)						
E. Construction of Noise						
Barriers (\$)						
F. Road Resurfacing (\$)						
G. Architectural	\$437,697	-	\$146,250	-	\$46,800	-
Measures (\$)						
H. Landscaping (\$)	-	\$852,045	-	\$253,750	-	\$81,200
I. Site-specific Civil Works	-	-	\$1,150,000	\$1,150,000	-	-
(\$)						
J. Miscellaneous (\$)	-	-	-	-	\$85,000	\$85,000
K. Subtotal (\$)						
L. Contingency (%)						
M. Total (\$)						

 Table 2-5: Concept costing of viable amelioration options, Mt Lindesay Highway

Benefit analysis

The results of the benefit analysis for each viable option, and obtained using the DST, are presented in Table 2-7.

An analysis of the environmental and social benefit factors has been undertaken using the benefit matrix included as a part of the benefit analysis section of the DST. Deciding on whether the factors will have a positive or negative effect is, however, dependant on the experience and site knowledge of the decision-maker. The effect of noise barriers/mounds and building treatment on the environmental and social factors are presented in Table 2-8.

Option ID no:	Option description	Number of receivers with noise levelsOptionreduced from assessment to targetescriptionlevels			Cost/receiver (\$/rec.)	Maximum noise level reduction (dB)			
	Existing Parks and Edu residences recreation and buil		Educ and h build	Education and health buildings		Ext.	Int.		
		Ext.	Int.		Ext.	Int.	-		
1	Noise	1	0	1	4	0	80,244	4 dB	
	barrier —							$L_{A10(1)}$	0
	noise wall							hour)	
2	Noise						142,008	4 dB	
	barrier —	1	0	1	4	0	·	$L_{A10(1)}$	0
	noise							hour)	
	mound								
4	Noise								
	barrier —	1	0	1	4	0	216,041	6 dB	0
	noise wall &							$L_{A10(1)}$	
	Pavement							hour)	
	surface								
5	Noise								
	barrier —	1	0	1	4	0	233,959	6 dB	0
	noise							$L_{A10(1)}$	
	mound &							hour)	
	Pavement								
	surface								
6	Noise								
	barrier —	0	1	1	0	4	21,967	2 dB	16 dB
	noise wall &							$L_{A10(12)}$	$L_{A10(1)}$
	Building							hours)	hour)
	treatment								
7	Noise							2 dB	16 dB
	barrier —	0	1	1	0	4	27,700	$L_{A10(12)}$	$L_{A10(1)}$
	noise							hours)	hour)
	mound &								
	Building								
	treatment								

Table 2-7: Benefit analysis of viable amelioration options, Mt Lindesay Highway

Table 2-8: Benefit analysis of environmental and social factors, Mt Lindesay Highway

Cost	hanafit faatara	Ameliorative treatment options					
Cost-	benefit factors	Within the	e road reserve	Outside the road reserve			
Category	Factors	Pavement resurfacing	Noise barrier wall	Acoustic treatment of buildings			
Economic	Initial project costs	+ Moderate	– High	+ Low to moderate			
	Maintenance/operational costs	- Moderate	– Moderate	 Moderate (responsibility of property owner) 			
Environmental	Air circulation	+ Nil impact	 Potential impact 	 May require mechanical ventilation, or air exchange 			
	Shade effects	+ Nil impact	 Potential impact 	+ Nil impact			
	Fauna movements	+ Nil impact	 Potential impact 	+ Nil impact			

	Adverse operational impacts	+ Nil impact	+ Minimal impact	 Need to solve problems with ventilation & air- conditioning unit noise
	Visual aesthetics	+ Nil impact	 Potential impact 	+ Minimal impact
Social	Safety requirements	+ Surface drainage to be considered	 Site-specifics to be considered in design 	+ Nil impact
	Maintenance/access requirements	+ Nil impact	 Site-specifics to be considered in design 	+ Nil impact
	Preserving views	+ Nil impact	 Potential impact 	+ Nil impact
	Public amenities	+ Nil impact	 Restricts access in area 	 May restrict options to open and close windows & doors
	Visual considerations	+ Nil impact	 Site-specifics to be considered in design (incl. community art) 	+ Nil impact
	Community benefit	+ Provides benefit to local community and road users	+ Provides benefit to local community	 Restricts benefit to individual dwellings
	Privacy and security	+ Nil impact	 Site-specifics to be considered in design 	+ No direct impact

Note: + Represents potential advantages or nil impact - Represents potential disadvantages

Case study 3: Pacific Motorway between Peachey Road and Pimpama River, Ormeau, Queensland

Noise study area

The noise study area is located along the Pacific Motorway between Peachey Road and Pimpama River, Ormeau, Queensland. The road consists four double lanes with residential land uses on the both sides of the road. The road authority, QDMR, has conducted a road project to upgrade the existing road in the study area. The traffic flow and road surface data at the assessment year 2011 are:

Pacific Motorway:

AADT	51,633
% commercial vehicles	9.0%
Posted traffic speed	110 km/h
Existing road surface type	Concrete

Noise impact and code assessment

According to the relevant noise criteria, the study area is defined as upgrading existing road. The noise receivers in the study area are defined as existing residences and an outdoor recreational area for a tennis court. An external level, 68 dB(A) $L_{A10(18 \text{ hours})}$, is recommended as the noise criterion for adjacent residential properties of the study area, and an external level, 63 dB(A) $L_{A10(12 \text{ hours})}$ for the recreational areas.

Table 3-1 lists the predicted noise levels calculated by SoundPlan.

Receiver no:	Land-use type	Predicted noise level dB(A)	Descriptor
R1523	Existing residences	67	L _{A10(18 hours)}
R1524	Existing residences	63	LA10(18 hours)
R1525	Existing residences	62	LA10(18 hours)
R1526	Existing residences	63	LA10(18 hours)
R1527	Existing residences	62	LA10(18 hours)
R1528	Existing residences	68	LA10(18 hours)
R1529	Existing residences	67	LA10(18 hours)
R1530	Existing residences	67	LA10(18 hours)
R1531	Existing residences	66	L _{A10(18 hours)}

Table 3-1: Predicted external levels of noise receivers, Pacific Motorway

R1532	Existing residences	67	$L_{A10(18 \text{ hours})}$
R1533	Existing residences	69	$L_{A10(18 \text{ hours})}$
R1534	Existing residences	68	$L_{A10(18 \text{ hours})}$
Tennis Court	Parks and recreational	67	$L_{A10(12 \text{ hours})}$
R1535	Existing residences	70	$L_{A10(18 \text{ hours})}$
R1536	Existing residences	69	$L_{A10(18 \text{ hours})}$
R1537	Existing residences	69	$L_{A10(18 \text{ hours})}$
R1538	Existing residences	67	$L_{A10(18 \text{ hours})}$
R1539	Existing residences	67	$L_{A10(18 \text{ hours})}$
R1540	Existing residences	66	$L_{A10(18 \text{ hours})}$
R1541	Existing residences	68	$L_{A10(18 \text{ hours})}$
R1542	Existing residences	68	$L_{A10(18 \text{ hours})}$
R1543	Existing residences	69	$L_{A10(18 \text{ hours})}$
R1544	Existing residences	68	$L_{A10(18 \text{ hours})}$

Note: *Road surface type is concrete.

**Receivers exceeding their relevant criterion have been highlighted in bold type.

Table 1 shows that five out of 22 residential noise receivers are predicted to exceed the noise criteria, 68 dB(A) $L_{A10(18 \text{ hours})}$, and the tennis court is predicted to exceed the noise criteria, 63 dB(A) $L_{A10(12 \text{ hours})}$. The highest noise level $L_{A10(18 \text{ hours})}$, 70 dB(A), exceeds the criteria by 2 dB, and the noise level of the tennis court, 67 dB(A) $L_{A10(18 \text{ hours})}$, exceeds the noise criteria by 4 dB. All the six receivers that exceed the criteria are sited on the west side of the Pacific Motorway. The result obtained using the DST was that "Noise Ameliorative is Required" for the noise study area.

Option identification

For reductions of the residential receivers, 2 dB(A) in external noise level and 12 dB(A) in internal noise level, three potential ameliorative options for the study area were selected for further study and are shown in Table 3-2.

Table 3-2: Selected potential ameliorative options for the residential noise receivers, west
side of Pacific Motorway

Option ID no:	Within/Outside road reserve option	Individual/Combined option	Option description
1	Within	Individual	Noise barrier — noise wall/noise mound
2	Within	Individual	Pavement surface
3	Outside	Individual	Building treatment

The noise amelioration options relating to building treatment are not applicable for the outdoor

recreational area (the tennis court). In order to achieve a reduction in the noise level for the outdoor recreational area (tennis court) of 4 dB(A), the first two options in Table 3-2 are viable ameliorative options, but the building treatment is kept for the comparison with the options Within-road reserve.

Amelioration analysis

For the potential ameliorative option, Noise barrier — noise wall/noise mound, the modelling results carried out using SoundPlan are listed in Table 3-3.

For the potential ameliorative options, Pavement surface and Building treatment, the built-in evaluation process produced the amelioration results listed in Table 3-3.

Within-road reserv	e		
Option 1: Noise bar	rier — noise wall/nois	se mound	
Surface type: Concr	ete		
Barrier no.	Height (m)	Length	Area
		(m)	(m ²)
Barrier 1	3	150	450
Barrier 2	5	44	220
	6	49	294
	7	27	189
	6	82	492
	5.5	395	2172.5
	5	55	275
		Total barrier length	Total barrier area
		802 m	4092.5 m ²
Option 2. Pavement	surface		
Surface type: Open-	-grade asphalt (OGA	.)	
Outside-road rese	rve		
Option 3: Building tr	eatment 1		
Surface type: Concr	ete		
Property ID	Building type	Construction category	
R1533	Residential	3	
R1534	Residential	3	
R1535	Residential	3	
R1536	Residential	3	
R1537	Residential	3	
R1543	Residential	3	

Table 3-3: Possible ameliorative options, west side of Pacific Motorway

Feasibility of options

According to the relevant noise criteria, noise barriers over 5 m high are defined as not feasible. Hence, the feasibility status of possible ameliorative options is shown in Table 3-4.

table 3-4: feasibility status of the possible ameliorative options, west side of Pacific Motorway

Within-road reserve	Feasible/Constructable
Option 1: Noise barrier — noise wall/noise mound	No
Surface type: Concrete	
Option 2. Pavement surface	Yes
Surface type: Open-grade asphalt (OGA)	
Outside-road reserve	
Option 3: Building treatment	Yes
Surface type: Concrete	

Concept costing

The three possible ameliorative options developed in the previous sections have been evaluated in terms of concept costs in this section. A cost comparison study of the five options has been carried out and presented in Table 3-5.

Table 3-5: Concept costing of the five feasible ameliorative options, west side of Pacific Motorway

Option ID no:	1	2	3
Option description	Noise barrier	Pavement surface	Building treatment
	(plywood)	(OGA)	
A. Project Management (\$)	79,200	79,200	79,200
B. Survey and Design (\$)	48,000	48,000	48,000
C. Land Acquisition (\$)	0	0	0
D. Service Relocation (\$)	10000	0	0
E. Construction of Noise Barriers (\$)	798,038	0	0
F. Road Resurfacing (\$)	0	1,400,000	0
G. Architectural Measure (\$)	0	0	125,000
H. Landscaping (\$)	1,590	1,590	1,590
I. Site-specific Civil Works (\$)	216,310	0	0
J. Miscellaneous (\$)	0	0	0
K. Subtotal (\$)	1,153,138	1,528,790	253,790
L. Contingency (%)	10	10	10
/			
M. Total (\$)	1,268,452	1,681,669	279,169

It is assumed that for all three options, the costs of the items, Project Management, and Survey and Design, are the same. The costs of items, Landscaping, and Site-specific Civil Works, are the same for the amelioration options with Noise barrier and/or Road resurfacing.

Benefit analysis

Table 3-6 shows the dollar benefits arising from implementing the possible ameliorative options for the noise study area.

Option ID no:	Option description	Number of ree reduced fror on		r of receivers with noise levels ed from assessment to target levels		Cost/receiver (\$/rec.)	Maximum noise level reduction (dB)		
		Exis reside	ting ences	Parks and recreation	Educ and h build	ation ealth lings	_	Ext.	Int.
		Ext.	Int.		Ext.	Int.	-		
1	Noise barrier (plywood)	5	0	1	0	0	211,409	7 dB L _{A10(18} hours)	0
2	Pavement surface (OGA)	5	0	1	0	0	280,278	6 dB L _{A10(18} hours)	0
3	Building treatment	0	5	0	0	0	46,273	0	17 dB L _{eq(1} hour)

 Table 3-6: Benefit analysis of viable amelioration options, Mt Lindesay Highway

Table 3-7 shows the non-dollar benefits arising from implementing the relevant ameliorative options within the study area.

Table 3-7: Non-dollar benefits arising from noise reduction resulting from implementing ameliorative options within the study area on the Pacific Motorway

		Ameliorative treatment options			
Cost-benefit factors		Within the road reserve		Outside the road reserve	
Category	Factors	Pavement resurfacing	Noise barrier wall	Acoustic treatment of buildings	
Economic	Initial project costs	+ Moderate	– High	+ Low to moderate	
	Maintenance/operational costs	– Moderate	– Moderate	 Moderate (responsibility of property owner) 	
Environmental	Air circulation	+ Nil impact	 Potential impact 	 May require mechanical ventilation /air exchange 	
	Shade effects	+ Nil impact	 Potential impact 	+ Nil impact	
	Fauna movements	+ Nil impact	 Potential impact 	+ Nil impact	
	Adverse operational impacts	+ Nil impact	+ Minimal impact	 Need to solve problems with ventilation & air- conditioning unit noise 	
	Visual aesthetics	+ Nil impact	 Potential impact 	+ Minimal impact	

Social	Safety requirements	+ Surface drainage to be considered	 Site-specifics to be considered in design 	+ Nil impact
	Maintenance/access requirements	+ Nil impact	 Site-specifics to be considered in design 	+ Nil impact
	Preserving views	+ Nil impact	 Potential impact 	+ Nil impact
	Public amenities	+ Nil impact	 Restricts access in area 	 May restrict options to open and close windows & doors
	Visual considerations	+ Nil impact	 Site-specifics to be considered in design (incl. community art) 	+ Nil impact
	Community benefit	+ Provides benefit to local community and road users	+ Provides benefit to local community	 Restricts benefit to individual dwellings
	Privacy and security	+ Nil impact	 Site-specifics to be considered in design 	+ No direct impact

+ Represents potential advantages or nil impact

- Represents potential disadvantages

Conclusion

Three case studies have been conducted using the DST, and the findings for each have been presented in this report. Using the DST it was possible to compare assessment noise levels against relevant criteria and determine whether noise amelioration would be required; evaluate the capability and feasibility (constructability) of alternative noise amelioration strategies; and analyse the respective costs and benefits.

The findings presented in the report are used to demonstrate that the DST can be used to analyse not only traditional noise amelioration strategies such as noise barriers and resurfacing, but also strategies outside of the road reserve such as architectural treatments. In addition, the findings were used to demonstrate that combinations of treatments could also be analysed.

By combining all these features into a single tool we have been able to unite all aspects of the road traffic noise amelioration process. With such a tool the decision-maker can quickly and efficiently compare alternative strategies and identify the most promising ones, worthy of being reviewed by other stakeholders and the wider community.

Further information	Partners in progress
Dr Saman de Silva School of Civil and Chemical Engineering RMIT University GPO Box 2476V Melbourne VIC 3001 Australia	Decision Support Tools Handbook is a collaborative product developed by the CRC for <i>Construction Innovation</i> with project input from the following partners: RMIT University and Queensland Department of Main Roads
Final: s desilva@construction inpovation info	
	RMIT UNIVERSITY
	Queensland Government
CRC for Construction Innovation	
9 th Floor, L Block, QUT Gardens Point,	
2 George Street, Brisbane, Qld, 4000	
Phone: +61 / 3864 1393	
Fax: +61 / 3864 9151	
Email: <u>enquiries@construction-innovation.info</u>	
Web: www.construction-innovation.info	