

THIS EVENT IS PART OF THE AUSTRALIAN INNOVATION FESTIVAL

www.ausinnovation.org

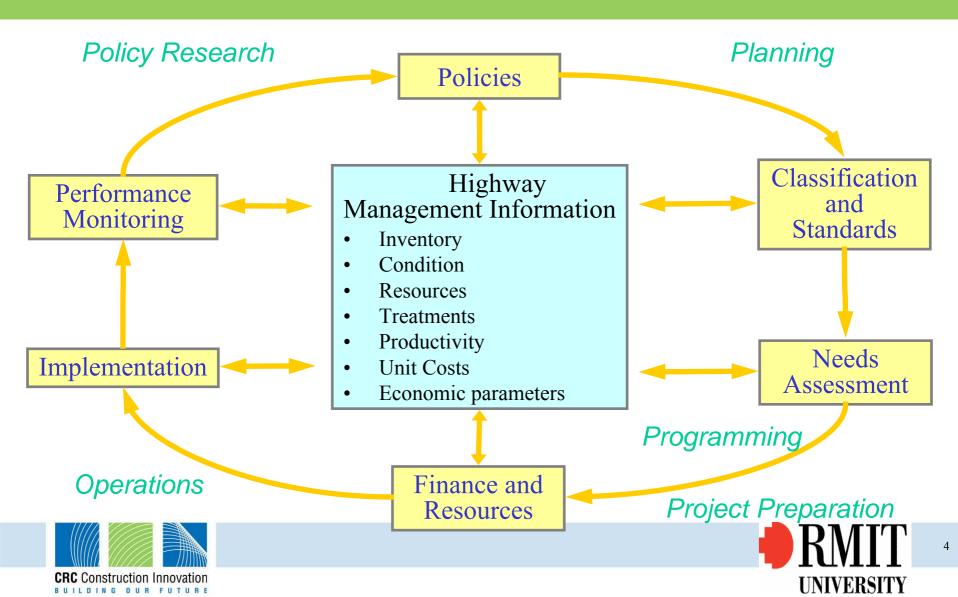
Industry Seminar Tuesday, 26 April 2005 Brisbane City Hall

Bringing Innovation to Facility Management

Decision Framework for Road Development and Maintenance Investments

Neil Robertson Queensland Department of Main Roads

Investment Decision Framework


- Road system is an important economic asset
- Assets require sustainable business management
- Investment decisions will consider future performance of the investment
- Performance:
 - of the infrastructure (physical & economic)
 - of the vehicle fleet
 - effect (benefits) to road users
- Costs and benefits:
 - to the agency
 - to the road users
- effective decision making requires a network of knowledge and decision support skills

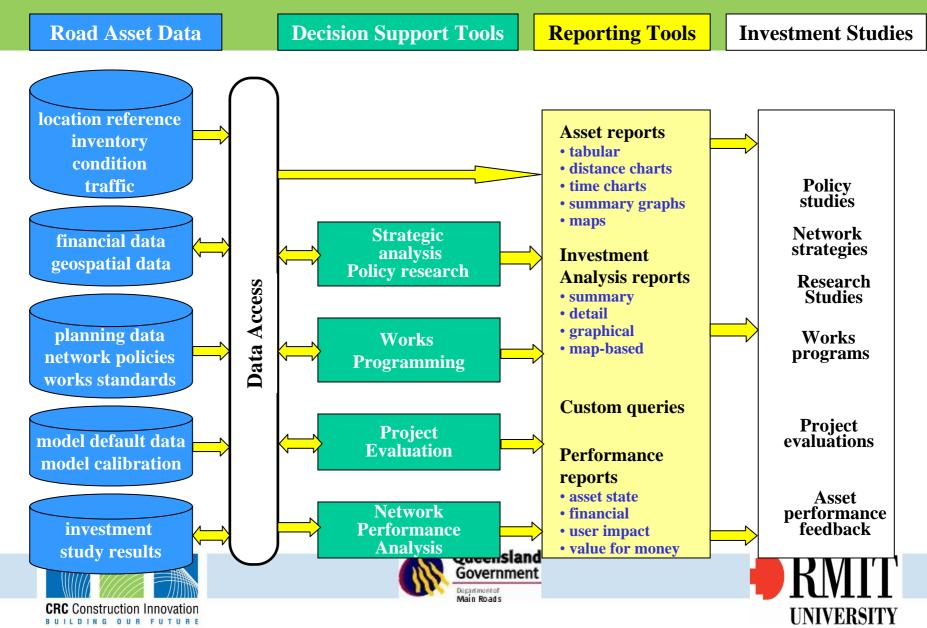
Road Management Cycle

Investment Information

- Identifying deficiencies in the road system
- Predicting future trends in deficiencies
- Developing strategic plans and policies
- Developing forward plans for improvement and upkeep works
- Programming works into budget years
- Conducting appraisals of project proposals
- Predicting impact and consequences of investment options
- Researching local road transportation needs
- Researching future impacts of operational or technological options

Road Asset Decision Support

The decision support system should:


- support Planning, Programming, Preparation and Policy Research functions
- present relevant, reliable, up to date information
- predict future impacts on the transport system and its users
- compare competing investment or policy choices
- consider both the infrastructure and the community
- allow for new work, maintenance and upgrading
- provide a reliable calibrated modeling capability
- assess investment impacts over life cycles
- provide monetary and non-monetary measures of investment effectiveness
- identify optimum choices between alternative investments

Road Asset Management System

Background

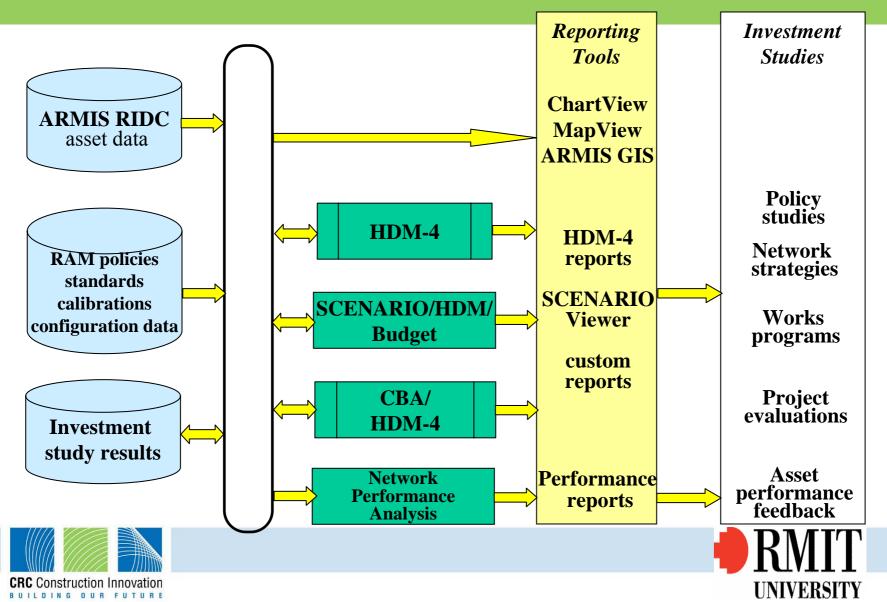
- Australia has billions of dollars worth of civil infrastructure assets as roads, bridges, railways, buildings and other structures. Road assets alone are valued at around A\$ 140 billion.
- As condition of assets deteriorate over time, billions of dollars are spent annually in asset upkeep, which amounts to expenditure in the order of A27\$ million per day.
- Increasing priority conflicts between capital and recurrent funding needs
- Public demand for greater accountability in using public funds
- Need for risk management approaches that consider both financial and non-financial impacts

Some QLD Road Investment Statistics

Road network

- Total 180,000 km
- State Controlled 34,000 km
- Replacement value of State Controlled network: \$25 billion
- Annual net depreciation: \$524 million
- Five year works program (RIP):\$5.6 billion

QLD Main Roads Road Asset Management


- Investment planning and asset management takes a medium to long term view: 10 to 20 years+
- Network management strategies to deliver levels of service consistent with network performance targets
- Investment decision support relies on
 - Comprehensive, relevant, quality asset data
 - Investment modelling tools: agency and user impacts over asset life cycles
- Decision makers expect reliability in forecasting, investment risks understood

Main Roads' Road Asset Management System: The Future

CRC Project Aim

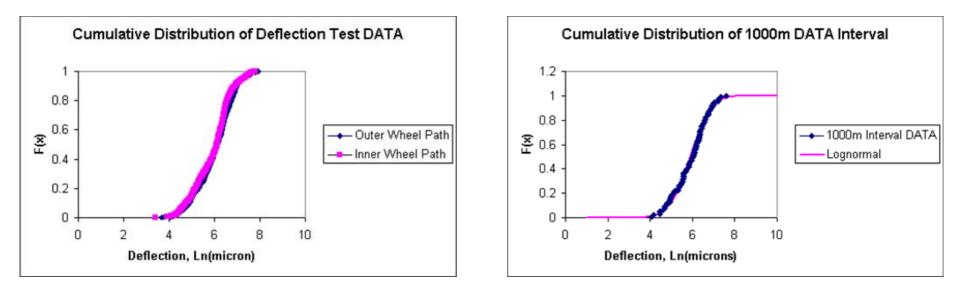
Investment Decision-Making Framework for Infrastructure Asset Management

Develop elements of a systematic investment decisionmaking framework for infrastructure asset management which takes into account economic justification, social and environmental considerations, while incorporating uncertainty and risk assessment.

Initial Research Tasks

- Research Task 1: The Development of a Procedure for Optimising Data Collection
- Research Task 2: The Development of a Method for Risk-Adjusted Expenditure and Reliability Assessment
- Research Task 3: The Development of Pavement Prediction Models of road conditions for Queensland

Optimising data collection


- Focus on strength te also the most expense
- Studied probability dia FWD data (200m interest)
- Interpretation of cons the consistency of date
- This method identifie
 1200m without much

LN(Do) =N(6.05, 0.805)

LN(Do) =N(5.913, 0.795)

Optimising data collection

Potential lower costs for network level data collection
 Example: Structural data collection

Under current practice (200m test intervals), a statewide survey would cost \$5million.

This research justifies 800m test intervals, costing \$1.3 million for a statewide survey.

thus, a potential 75% saving on data collection costs, (approx. \$3.7 million annually) or increase data collection length by four times.

• Main Roads WA spends \$800,000 annually for structural data collection at 800m intervals.

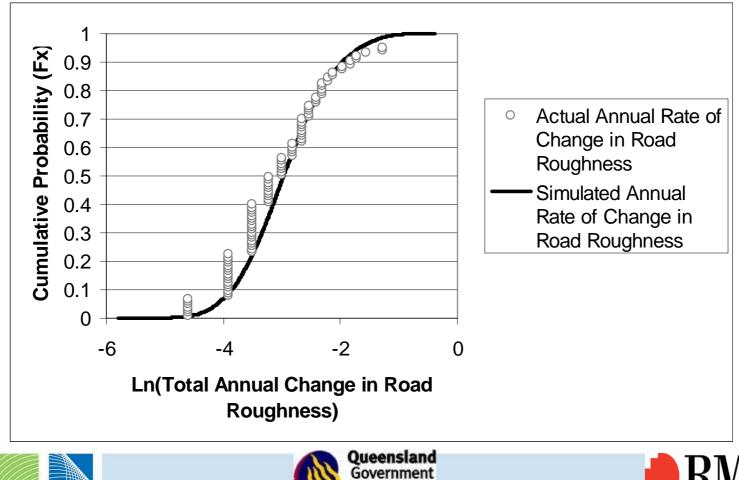
Calibrated Models for Road Condition Prediction

- Model calibration is a major component of the investment analysis process (in HDM4)
- Global need for an improved model calibration procedure
- Method used here is unique: utilises actual variability in asset data
- Investment simulation using stochastic model inputs based on the actual network asset data
- Results are encouraging
- Method yields calibrated models that closely replicate the actual variability in network condition
- Potential for an auto-calibration method

Calibrated Models for Road Condition Prediction

- Adopted HDM4 deterioration model for predicting the rate of change in road pavement roughness developed by The International Study of Highway Development and Management (ISOHDM 2001)
- This study used the probability-based method and Monte Carlo simulation technique
- Measured roughness was modelled for 1700km length on Bruce Highway in Queensland

HDM4 Model for Annual Rate of Change in Roughness


 $\Delta RI = Kgp (\Delta RIs + \Delta RIc + \Delta RIr + \Delta RIt) + m Kgm RIa$

Kgp	=	calibration factor, Default value = 1.0
∆RI	=	total change in roughness
∆RIs	=	change in roughness due to pavement strength deterioration due to vehicles
∆RIc	=	change in roughness due to cracking
∆RIr	=	change in roughness due to rutting
∆RIt	=	change in roughness due to pothole
(m kgm RIa = Δ RIe) = change in roughness due to climatic condition		

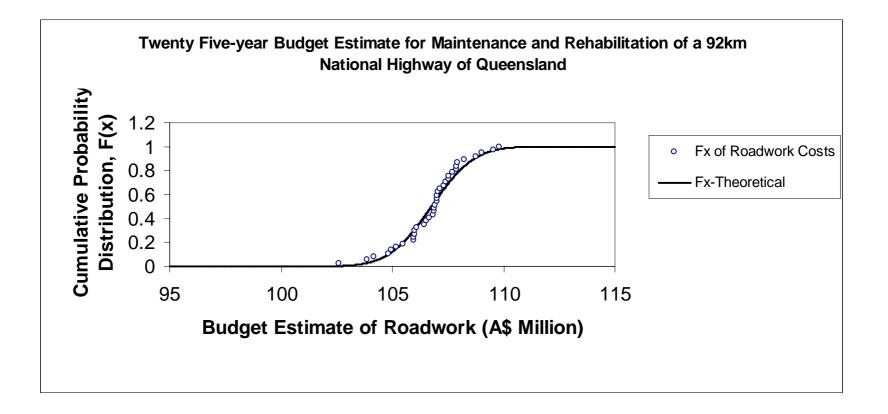
Department of Main Roads

Assessment of Investment Risk

- Road investment tools can predict the life cycle costs for construction and maintenance road projects within a networks.
- Most inputs to such analysis are variable, and consequently the predicted life cycle cost is variable, and demonstrates a probability distribution.
- In this study, critical variable inputs are simulated, in order to assess the variability of the output costs.
- To demonstrate the methodology, only the variability of pavement strength was considered in the analysis.

Assessment of Investment Risk

• Can assess the levels of risk associated with the budget estimate in relation to pavement strength


eg. Produce budget estimates for a project life cycle cost with 5% probability of exceeding

- This method can be used for any critical data input to assess risk association.
- Consequently risk associated with investment decisions can be assessed

Conclusion

- Queensland Main Roads is reviewing and improving its planning and investment decision support processes for road asset management
- Many system improvement opportunities
- CRC project contributes to 3 beneficial outcomes:
 - Cost effective data acquisition practice, with better understanding of data quality
 - Understanding reliability of future budget predictions
 - Improving credibility of predictions of network performance and of future needs for works

Conclusion

- Characterisation of the statistical properties of certain road asset data can be used to select an optimal test sampling plan, which is affordable and still statistically relevant.
 - will lower the cost of network level data collection
- Variability properties can be used for calibrating deterioration prediction models in predicting deterioration rates of road infrastructures to suit local conditions.
 - Model calibration is a major component of the investment analysis process and this unique stochastic method closely replicate the actual variability in network condition.

Conclusion

- The risk-adjusted assessment in budget/cost estimates can be used in assessing the variability of budget/cost estimates arising from the variability and uncertainty of critical input variables.
 - will improve confidence in future affordability of investment decisions.

