

Sustainability and Facility Management 9 August 2005 Forum Potts Point

LCADesign - Industry Perspective

Caroline Noller

Context

Environmental impact of buildings is *substantial* but

our *understanding* of efficient measures to abate impacts is *small*.

Ecological efficiency of built products must *radically improve* to reduce the risk of effects such as,

climate change.

ssue

Regulation and investor interest in responsible allocation of funds is driving industry need for cost effective impact assessment tools.

Paradox is that current methods are too complex for

average person and too expensive relative to what

they deliver.

Barriers

1. Lack of appreciation for the priority of

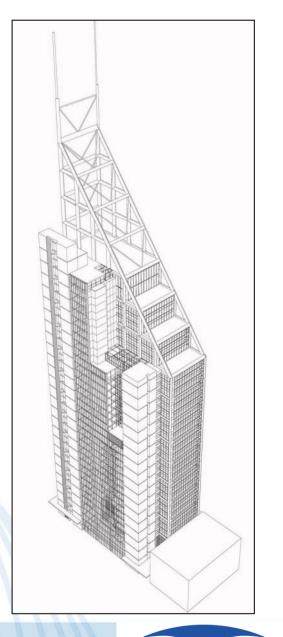
environmental impacts.

2. No current business case for embodied water and emissions.

3. Translation of complex LCA science to the

language of design team.

4. Cost of manual assessment.


Lend Lease Experience

Project LCA can cost \$3 to \$5 / m2 NLA for office and take many months. Too much, too long, too late.

Design can't react to impact assessment

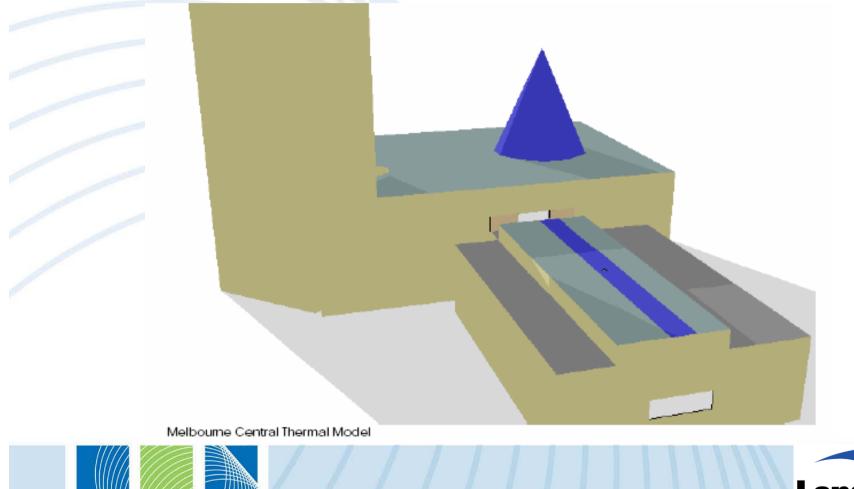
results.

ASPECT	WEIGHTING	MBS AVERAGE WEIGHTED SCORE	WEIGHTED SCORE
OPERATIONS MANAGEMENT	18%	7.29	1.31
RESOURCE CONSUMPTION	18%	8.03	1.45
EMRONMENTAL LOADINGS	15%	8.45	1.27
INDOOR ENVIRONMENT QUALITY	18%	7.71	1.39
ECONOMICS	21%	6.80	1.43
EXTERNAL BUILT ENMRONMENT	10%	6.09	0.61

BUILDING OUR FUTU

CRC Response - LCADesign

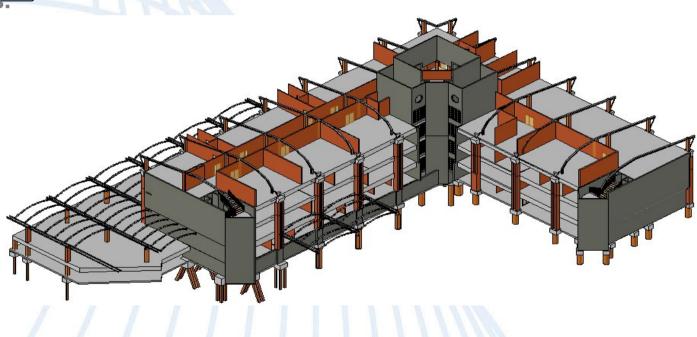
An automated real-time environmental impact assessment tool in a 3D CAD platform.


3D CAD as a design platform has expanded rapidly due to its productivity benefits and client focussed, friendly outputs.

3D Application for Environment

Use for thermal modelling now well established.

1. Designer develops the 3D CAD model.


- 2. Automated quantity take-off completed.
- 3. LCI refers to the schedule of quantities.
- 4. Relevant indicators selected by user.
- 5. Results generated.
- 6. Comparative analysis of alternative designs

enabled.

1. Designers generate the 3D CAD model as normal part of design process.

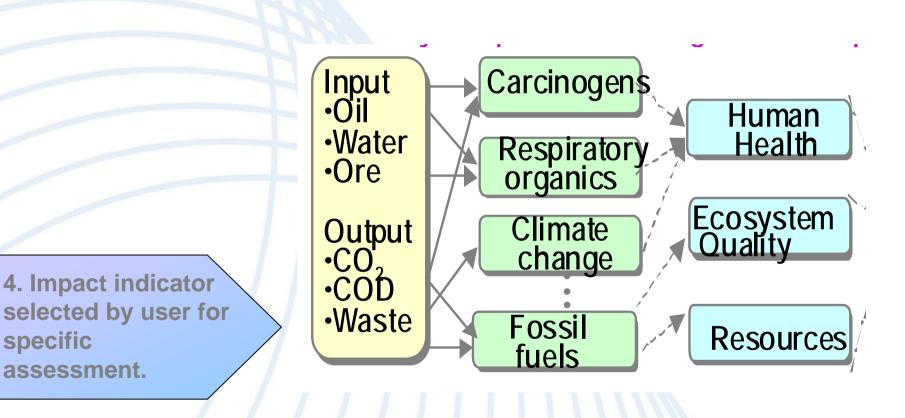
D:\CRC_De

ArchiCAD_files\se

2. Automatic takeoff from CAD to produce a schedule of quantities.

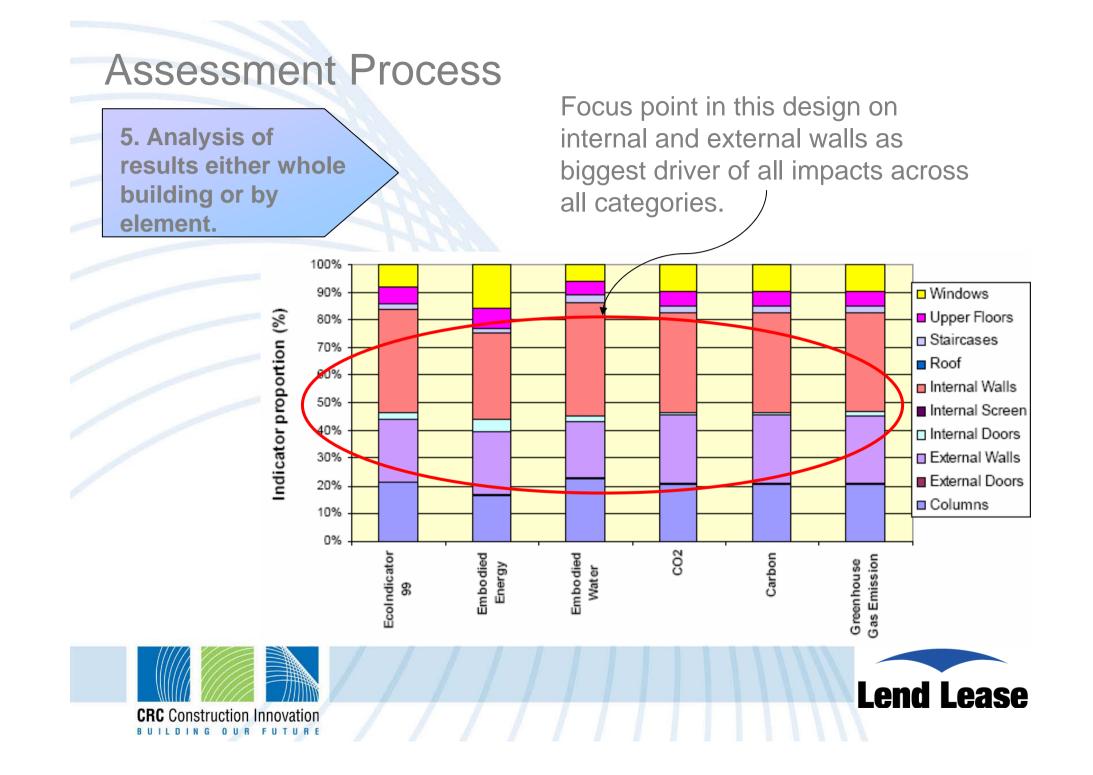
F	ile name	southbank	tafe.ifc	Read Ifc File	e	Access IMS							
C	escription	ArchiCAD g	enerated IFC file.			Columns	(SIRO					
A	Author	Architect		Doors and wir	odowe	VAC							
C)rganization	Building De	signer Office		100110	1							
Т	ime stamp	2002-04-30	T15:19:07		- 1								
S	ichema	IFC R2.0		Export Shee	et								
Valls													
		Int ex	t Component type	Thickness	Thie	ckness unit	Heiaht	Heiaht	unit Lenath	Lenath unit	Total area	Total	а
	Concrete				m			m		m		m2	_
* (Concrete	?		0.20			3.00	m	45.55	m	136.65	m2	-
•	Concrete	?		0.20	m		3.00	m	75.03	m	225.08	m2	_
* (Concrete	?		0.12	m		3.00	m	4.62	m	13.85	m2	
* (Concrete	?		0.20	m		3.00	m	59.58	m	178.73	m2	_
* (Concrete	?		0.23	m		3.00	m	8.97	m	26.90	m2	
+ (Concrete	?		0.20	m		?	m	17.01	m	25.51	m2	
I	+		Wall segment			?	m		17.01	m	25.51	m2	
* (Concrete	?		0.20	m		3.69	m	138.77	m	511.35	m2	
* (Concrete	?		?	m		?	m	?	m	?	m2	
* (Concrete	?		0.20	m		3.69	m	52.71	m	194.23	m2	
+ (Concrete	?		0.11	m		3.69	m	7.05	m	25.97	m2	
L	+		Wall segment				3.69	m	7.05	m	25.97	m2	
+	Brickwo	r ?		0.11	m		3.69		1.98	m	7.31	m2	
L	+		Wall segment				3.69	m	0.71	m	2.63		
L	+		Wall segment				3.69	m	1.27	m	4.68	m2	
+ (Concrete	?		0.23	m		3.69	m	10.00	m	36.85	m2	
L	+		Wall segment				3.69	m	10.00	m	36.85	m2	
+ (Concrete	?		0.20	m		3.69	m	19.15	m	70.58	m2	
L	+		Wall segment				3.69	m	0.36	m	1.31	m2	
1	+		Wall segment				3.69	m	2.76	m	10.19	m2	

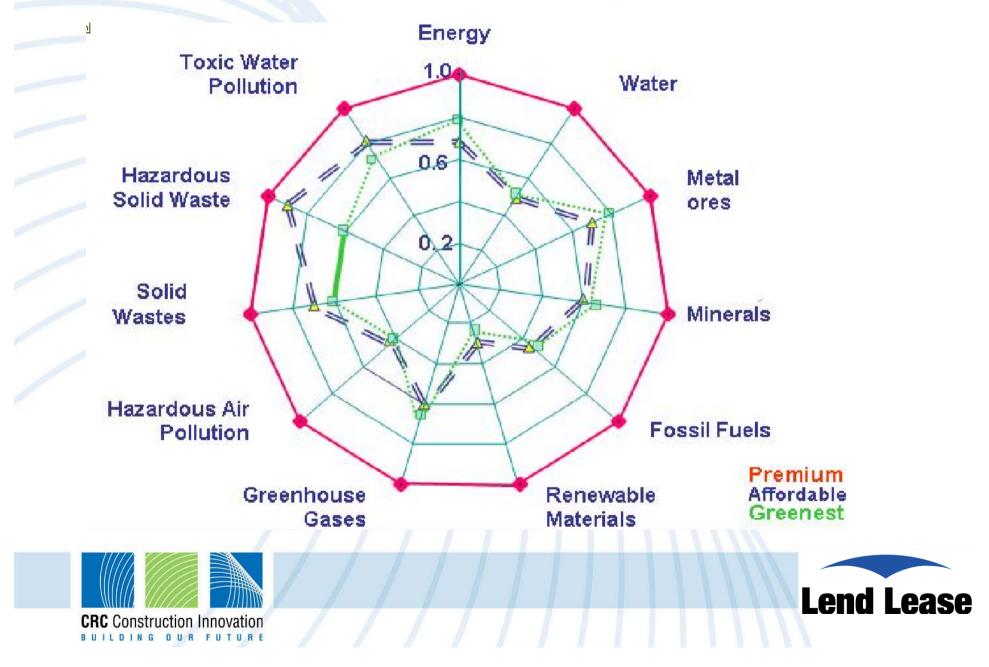
CRC Construction Innovation



3. LCI database refers to schedule of quantities and calculates impacts.

9015	9015 Dry Cement Clinker Formation								
	Input operation		Unit						
1	Air emission dust processing	7500 0000	ma						
2	Air emission C.O. processina	370000 000	ma						
2	Air emission CO ₂ processing	500000 000	ma						
4	Air emission SOx processing	8000 0008	mg						
612	Solid Waste Mineral Waste	0.0707	kg						
818	Burn coal feed stock as fuel	0.2646	kğ						
842	Coal use in Australia	1.6262	МJ						
878	Diesel Use in Australia	0.3900	MJ						
884	Other Oil Use in Australia	0.1870	MJ						
888	Natural gas use in Australia	1.5000	MJ						
3542	Road Transport A 18+ tonne	0.0019	Vkm						
3544	Rail Transport Freight	0.4800	vVkm						
9014	Mix ture for Cement Making	1.4400	kg						





Comparative Analysis of Design Solutions

LCADesign for Property

Embracing Opportunity:

Services the needs of those seeking environmentally preferable buildings – where results are defensible.

Managing Risks:

Increases understanding of how to build with lower emissions footprint and reduce inflation risk of greenhouse.

LCADesign for Property

Cost Competitive:

Reduces the cost of environmental assessment.

Value Creation:

New service platform for environmental and design professionals.

Limitations

1. Uncertainty of LCI database data.

2. Maintenance of databases in a rapid product

market.

3. Completeness of object databases.

4. User education and capacity.

5. Commercial results.

Conclusion

1. Powerful tool with potential to transform environmental assessment market.

2. More work to evolve reliability of some aspects.

3. Application needs to feedback into continuous development loop.

4. Issues are here to stay, LCADesign a innovative

response.

