

Peter Scuderi Chief Operating Officer, Research and Commercialisation

Sydney Research Symposium

4 June 2007

Cooperative Research Centre (CRC) for Construction Innovation

Cooperative Research Centre (CRC) for Construction Innovation

- International context of R&D
- Construction Innovation background
 - Current focus
 - Future focus
- Benefits of research in this industry

International context of R&D

International R&D Performance

Gross domestic expenditure on R&D in OECD countries

Construction Innovation Matters

CRC Construction Innovation

Impact of Construction Productivity Gain

Growth impact of a one-off productivity improvement in selected sectors (Source: ACIL Tasman, 2005)

Design, Construction, Property and FM Industry

- Strong multiplier linkages mining and transport
- Macro economic multipliers:
 - a one-off sustained 10% improvement in producivity is assumed in each service sector
 - the construction sector will have the biggest average annual impact on GDP, at 3% over 20 years (2000-2020)
- Construction Sector Contributes 20% of GDP (including FM)
- 1 in 5 dollars generated in the Australian economy is generate by the AEC-FM industry.

Design, Construction, Property and FM Industry

- Growing at average rate of 2.6% pa
- Sector income A\$130 billion
- Highly fragmented
 - 230,000 firms employing 730,000 people
 - 94% of businesses employ less than 5 people
- Federal Government Action Agenda clearly supported formation of CRC to service property and construction

CRC for Construction Innovation

Our Vision

To lead the Australian property and construction industry in collaboration and innovation

Participants in the CRC for *Construction Innovation*

CRC Research Space

Public-Private Partnerships in R&D

- Build innovative networks of industry, government and research
- Attract and mobilise resources
- Research skills training
- Respond to global challenges with national and international partnerships
- Implementation to make a difference

CRC for Construction Innovation

- A\$64M in cash and in-kind over 7 years
- Government, industry and research partners
 - 21 participants nationally
 - 400 people involved = 60 EFTS
- Headquartered at QUT in Brisbane
 - 6 centres nationally
- Only one of its kind in construction in Australia
 - Building, Infrastructure and FM

Creating...a better future through collaboration

CRC for Construction Innovation

International Research Alliance (ICALL)

BuildingSmart IAI

CIB

National Vision

High Impact Benefits

Relationship Management Course

Relationship Management in Project Delivery – 2 day workshop For those involved in project management and delivery – a practical and applicable approach

Courses rolled out :

- Oct 06 Qld Dept of Main Roads
- March 07 John Holland Group
- April 07 Qld Dept of Public works

Courses being developed with tailored content

Lang O'Rouke

Safety - Comparison of fatality incident rates per 100,000 construction industry employees 1998-99 to 2001-01

Safety Statistics - Australia

- Construction site labour makes up 8% of the Australian workforce but accounts for 15% of all fatalities in the workplace.
- On average one person is killed on a construction site each week in Australia.
- Responsibilities and Core Competencies
- Voluntary Code of Practice
- Training Toolkits
- Performance Assessment Indicators

BRITE Project

- Improve the incidence and quality of innovation in the Australian building, construction and FM companies
- 12 National Case Studies
- National Surveys
- Interviews with 20 of Australia's most innovative contractors
- Over 200 industry publication articles.

Integrated Digital Modelling (BIM, 3D CAD etc)

Limitations in Current Industry Practice

- Little support for client requirements/performance or facility briefing
- Lack of integration of facility context for planning, sustainability, code checking compliance, etc
- What are most common design/construction errors?
 - Design errors in construction due to lack of/or poor coordination
- Inadequate support for asset & facility management
 - Where is the asset information for FM?

Limitations in Current Industry Practice

Common grid setting out needed for RJP/FCB/PCS/EPL

Currently, drawings have to be aligned by matching corners of building

Limitations in Current Industry Practice

CRC Construction Innovation

Information Lifecycle

Generic Attributes of BIM

- robust geometry objects are described by faithful and accurate geometry, that is measurable
- comprehensive and extensible object properties that expand the meaning of the object - Objects thus can be richly described e.g. a manufacturers' product code, or cost, or date of last service etc.
- semantic richness the model provides for many types of relationships that can be accessed for analysis and simulation e.g. is-contained-in, is-related-to, is-part-of etc.
- integrated information the model holds all information in a single repository ensuring consistency, accuracy and accessibility of data
- life cycle support the model definition supports data over the complete facility life cycle from conception to demolition, extending our current over-emphasis on design and construction phase.

Strategy for information integration

BIM Benefits

- Faster and more effective processes information is more easily shared, can be value-added and reused
- Better design building proposals can be rigorously analysed, simulations can be performed quickly and performance benchmarked enabling improved and innovative solutions
- Controlled whole life costs and environmental data environmental performance is predictable, life-cycle costs are understood
- Better production quality documentation output is flexible and exploits automation
- Life-cycle data requirements, design, construction and operational information can be utilised in facility management
- Integration of planning and implementation processes government, industry
 and manufacturers have a common data protocol

Comfort and Energy simulation

Comfort and Energy simulation

MONTHLY ENERGY CONSUMPTION

FM Energy Monitoring

Construction Over time

- Progression of construction over time;
- Improves quality of:
 - Simulations
 - Construction Plans
 - Safety
 - Logistics
 - Costs
- Allows professionals to test the design for performance, construction sequences and identify design conflicts.

Reusing IFC data

Business Case for Implementation

- Allow optimisation of design and construction alternatives
- Project teams are able to produce simulations of different design ideas and schedules quickly and easily
- Delays and changes can be minimised as design work is integrated with construction work
- Eliminates potential problems with constructability, design conflicts, assembly of building components and materials delivered to site.

HOW TO IMPLEMENT

- A new work method/process is required in which more detailed information is supplied early on.
- Allow 3D models to be developed initially instead of having to try to convert 2D data.
- 3D models must allow changes to be made without having to completely reconstruct the model.

Future Construction Innovation

Future Construction Innovation

Increase in number of participants

Additional Focus of Research

- Development of a National Standard for Digital Models
- Case Studies of brown field FM sites
- Reducing Disputes
- Safety Performance Indicators
- Collaborations with University of Salford (UK), Stanford University (USA) and Government property owners in Northern Europe and USA.

Third International Conference

Clients Driving Innovation: Benefiting from Innovation

Demonstrating the benefits of applied research and innovation in the building, infrastructure and FM industry

12 – 14 March 2008

Surfers Paradise Marriott Resort & Spa Gold Coast : Australia

In association with:

Thank You

