Hyper-shaku (Border-crossing): Towards the Multi-modal Gesture-controlled Hyper-Instrument

Kirsty Beilharz
Key Centre of Design Computing & Cognition
University of Sydney
+61 2 9351 4031
kirsty@arch.usyd.edu.au

Joanne Jakovich
Key Centre of Design Computing & Cognition
University of Sydney
+61 2 9351 2053
joanne@jakovich.net

Sam Ferguson
Acoustics Research Laboratory
Faculty of Architecture
University of Sydney
samferguson@ihug.com.au

ABSTRACT

Hyper-shaku (Border-Crossing) is an interactive sensor environment that uses motion sensors to trigger immediate responses and generative processes augmenting the Japanese bamboo shakuhachi in both the auditory and visual domain. The latter differentiates this process from many hyper-instruments by building a performance of visual design as well as electronic music on top of the acoustic performance. It utilizes a combination of computer vision and wireless sensing technologies conflated from preceding works. This paper outlines the use of gesture in these preparatory sound and audio-visual performative, installation and sonification works, leading to a description of the Hyper-shaku environment integrating sonification and generative elements.

Keywords

Gesture-controllers, sonification, hyper-instrument

1. INTRODUCTION

Background developments contributing to the Hyper-shaku project are intelligent sensor environments (sensate spaces) and gesture-controller interactive audio-visual works. This paper describes the gesture-controlled audio-visual hyper-instrument and previous interactive gestural works that have led to it. Human movement, social and gesture data used as the foundation for sonification and visualization are shown, an alternative to the common sonification process of analyzing and representing abstract, non-contextual data. In contrast, gesture-data and room-data are user-centric, contextual, situated and experiential. In this way, ambient display and installation art influences conflate in informative data-driven aesthetic displays (bimodal audio and visual). The responsive/intelligent room using pressure and motion sensing demonstrate environmental data used as the basis for sonification. The sensor technologies are essentially like embedded, passive gesture captors that track mobility in the environment, not worn and portable sensors. Ambient display in architectural spaces provides interesting information about the inhabitants and activities of a location in the socially reflective experience. Several of the works discussed implement generative structures integrated with information representation for interactive installation. Generative algorithmic structures provide a representation with a consistent mapping scheme and transforming, evolving display that is intended to enhance sustainable participation and motivation over longer periods of time. The example works from performance to installation in the first part of this paper have shaped the technology integration for the hyper-instrument: wireless gesture-controllers, computer vision motion triggering and real-time generative displays in Max/MSP + Jitter.

The second part of this paper is concerned with development of a gesture-controlled hyper-instrument (system). A key feature, distinguishing this from other hyper-instruments, is transforming the acoustic instrument into a hyper-instrument capable of both augmented audio and visual display. The system aims to control not only gesture-response events but also to trigger generative design processes affected by movement. Hence, the proposed system is a performance “environment” for multiple related compositions. It can be used to augment purpose-composed notated music for Hyper-shaku or in an improvisatory audio-visual performance context.

2. FORMATIVE WORKS

Gestural interaction, sonification and generative display in the following works influence the design of Hyper-shaku. Responsive/reactive spaces are discussed, followed by works that respond to gestural interpretation of space in performative works. This section considers mapping correlations between spatial activity and auditory display, in order that gestures can be understood by the interface-user and the audience.

2.1 Audio-visual Responsive Environments: Reactive Space

Other audio-visual responsive spaces, such as the Golan Levin’s work, Eyesweb, and other systems for movement capture using computer vision establish the concept of pervasive and responsive display is socio-spatial contexts. Tod Machover’s Hyperinstruments group at MIT Media Lab also addresses visual feedback in instrument design while Andy Hunt’s MIDAS programming environment and other work examines auditory and visual mapping of gestures that has contributed to the formation of this approach.
Emergent Energy developed in the University of Sydney, Key Centre of Design Computing and Cognition’s sensate lab (Figures 1, 2 & 3) demonstrates the way in which socio-spatial behaviours are mapped onto a computational process of sonification and visualization. Beilharz, Vande Moere and Scott’s Emergent Energy (Figure 1) is an iterative, reflexive bi-modal (audio-visual) system of interaction in which motion, speed, number of users and position in a space (triggering pressure-sensitive floor mats) determine the growth of a visual design drawn with a Lindenmayer System (L-sys) generative algorithm [3; 7; 17; 22; 23; 24]. The design artefact is an embedded history of the movements, interactions and number of people who produced it. Sound is a spatial experience, inseparable from context [21] so it is logical to utilize 3D spatial interaction to measure activity and manipulate sound.

Figure 1. Beilharz, Vande Moere & Scott’s L-system generator patch in Max/MSP + Jitter software [15] used to create branched visualizations on screen. In the corresponding sonification, the number of people relates to dynamic intensity, position to timbre (tone colour) and speed to frequency (pitch) [3].

Figures 2. & 3. The Sensate Lab (2 views) showing the “invisible” pressure sensitive floor mats, triggering the visual and auditory sound system and (bottom) before carpeting, networked to the Teleo (analog to digital in/out) modules for conversion to a USB interface [20].

Sonic Kung Fu by Jakovich and Beilharz (at Sydney Esquisse exhibition, March 2005) is a sonic art installation using colour-sensing gestural interaction with sound, in which participants wear coloured gloves to perform gestures that produce a real time responsive audio soundscape (Figure 4). A web cam receives the visual gesture information. The Max/MSP patch responds to the motion of the centre-point of a specific colour (calibrated to match the glove being worn), responding with auditory variation across a range of x and y-axis values. The immediacy and mapping of this work was intentionally as simple and intuitive as possible for recognition to invoke interaction by passers-by in a gallery setting. The result was that users spent considerable time with the “instrument” learning to understand and control its performance.

Figure 4. Gestural interaction with auditory display created in response to colour tracking of the spatial glove motion.

2.2 Gesture Mapping for Auditory (and Visual) Display: Interpreting Space

Correlating/mapping gesture to responsive representation involves the design decisions most crucial to comprehensibility and intuitive interaction [1; 2; 25]. Depending on the context, the degree to which gestures and reflected consequences have to be learned varies. In the public sphere, like in Jakovich and Beilharz’s Sonic Tai Chi Sydney Powerhouse (Design and Technology Museum) installation, the audience is transient, covering a range of ages from children to adults and the immediacy of engagement determines the length of time a user will participate in the display. Regardless of the simplicity of mapping correlations, users seemed to naturally pay primary attention to the visual display and, when questioned, it took longer for users to understand and explain their interpretation of the relation between their movement and auditory display than both the literal and generative visual display elements.

Sonic Tai Chi uses a computer vision system (identical to the method in Hyper-shaku) to capture movement data to produce a visualization comprised of the interpolated real image of the user combined with random Cellular Automata and the music is a sonification of the motion left to right and up and down with pitch, spatial panning, timbre and intensity affected by user interaction. A second sonification engine produces audio particles from the position, multiplicity and intensity of the Cellular Automata that can be triggered into rapid proliferation (using the breeding metaphor of aLife) by moving the body in one horizontal direction across the room and towards stasis by moving in the opposite direction (Figure 5). This piece is designed for spatial interaction by the general public. It has its own approximately 25m-square room, rear projection, stereo speakers hidden in the walls and camera concealed below the screen.

Max/MSP + Jitter uses the Horn-Schunk method to estimate optical flow of movement captured by the web cam [16]. There are numerous possibilities of rules to govern the propagation of Cellular Automata [9; 26] but this scenario uses the original, quite simple rules for pattern formation based on John Conway’s Game of Life.
The Sensor-Cow project uses the La Kitchen Kroonde Gamma receiver and wireless UDP\(^1\) transmitter and gesture captors. The sensors used were acceleration, gyroscopic and bi-directional motion captors. Figure 6 shows the way in which these sensors and transmitter are attached to the calf for capturing the data. The outcome was a sonification of the calf’s motion.

The highly sensitive mercury motion sensors operate between extremes of direction, registering a “bang” (signal to the sonification program) when changes in direction occur. Thus these were attached to the front legs to indicate steps as the calf walked. The acceleration sensor values were scaled to 128 distinct output values. These sensors were attached to the calf’s ear and forehead, respectively, because these regions isolate significant independent gestures. The calf naturally raises and lowers its head to eat, when flicking away flies, in response to people and other animals - it is expressive and the range of motion is diverse. While naturally following whole head movements, the ear is also flicked and rotated independently producing an audibly recognizable gesture.

A distinctive timbre was attributed to each sensor in order to make it possible to distinguish the sounds arising from each sensor region. The rhythm, pace/acceleration and velocity of action are heard in real time. Hence the correspondence between rapid gestures and rapid sonification is literal. For both the acceleration and gyroscopic sensor, extremes of motion away from the median, drives the pitch in directional extremes away from a central pitch region. The direction of pitch, ascending and descending away from the mean, corresponds to the x-axis direction of motion so that changes in direction are audible and circular motions of the ear and head produce sweeping auditory gestures that reinforce the audio-visual connection between activity and sonification. The sonification was programmed in Max/MSP +Jitter using La Kitchen’s Kroonde Gamma recognition [14] and CNMAT Berkeley’s Open Sound Control [10].

The Music Without is concerned with exposing the motion of music. Real time computer music responds to sensors placed on the violinist’s left-hand finger and forearm and the bowing arm. The gyroscopic, binary-motion and acceleration sensors convey the intensity, physicality and movement (outside forces) that performing involves. Typically, we think of the music within, of the source of musical creation being the mind (composer) and the heart (interpretation). Most reactive, responsive computational real time music systems analyze and respond to pitch, harmony and rhythm. Thus, most systems for improvisation and collaboration are responding to the musician’s inner music by “listening” to the auditory outcome.

In contrast, this system creates a response to the physical forces producing sound; hence ‘the music without’ is more like choreography. The “other musician” here is a sonification of the external energies creating music. The system is generating a musical response to gestures perceived by the sensor devices. It is not so much listening as feeling, or experiencing, the process of performing. This work emphasizes a different and often overlooked part of the music-creating process.

3. HYPER-SHAKU (BORDER CROSSING): AUGMENTING SPACE

Hyper-shaku is a new hyper-instrument performance environment that uses motion to trigger response events and growth of generative process in both auditory (electronic) and visual displays. Its purpose and configuration follow.

3.1 Description and Objective

Hyper-shaku (Border-Crossing) is both a digital audio-visual creative environment and a performance/composition outcome.

\(^1\) UDP is a protocol for high speed, high precision data-acquisition.
The motivation behind this application is two-fold:

1) To develop a system of computer vision and sensors producing an augmented sound-scope and derivative visual projection (that will be applied to a prototype and continuing works); and

2) To demonstrate the prototype with an initial concert installation (by performance with a composed, notated shakuhachi part).

This project develops an ongoing framework of computer vision for capturing movement of a performer, together with wireless sensor information to trigger a generative computer system. The generative part of the process produces a motion-activated fabric of computer vision and graphic visualization. First stages of using computer vision with web-cam sensing and Max/Jitter software patches integrating Pelletier’s cv.jit ‘Computer Vision for Jitter’ programming objects 2 were implemented in Jakovich and Beilharz’s Sonic Kung Fu (Sydney Esquisse Exhibition) and Sonic Tai Chi (Cité Internationale des Arts, Paris in September 2005 & Sydney Powerhouse BetaSpace Exhibition in November-January 2005-2006). Radio-frequency gesture controllers (similar to the Sydney Powerhouse BetaSpace Exhibition in November-January 2005-2006) were used in 2005-2006). Radio-frequency gesture controllers (similar to the proposed WiFi sensors in this project) were used in Sensor-Cow and Music from Without. Musically, the intention of this project is to utilize this technological approach in a more developed electro-acoustic musical and visual context. Rather than producing literal sonification and visualizations as in previous works, this project will use the motion data to trigger synthesis processes in real time and to control a computational generative process for sound and visual design. Former work demonstrates the use of a Lindenmayer generative system (in Emergent Energies) and Cellular Automata (Sonic Tai Chi) for evolving graphical responses to user interaction. The generative part of the process produces a motion-activated fabric of computer music and graphic visualization. Hyper-shaku combines an aleatoric generative process using Cellular Automata with a homeostatic process using Neural Network Oscillators. The breeding behaviour of the Cellular Automata can be modeled formally (mathematically) (Figure 8):

\[y(t+1) = \begin{cases} 1 & \text{if } \sum_i w_i x_i(t) \geq \theta \\ 0 & \text{otherwise} \end{cases} \]

Figure 7. The Max/MSP Neural Oscillator Network patch, here showing the first 6 nodes, each sending and receiving information between nodes [12] that will be used as a stabilizing influence affected by large camera-tracked gestures. The Max/MSP patch is modeled on individual neurons: dendrites receive impulses and when the critical threshold is reached in the cell body (soma), output is sent to other nodes in the neural network.

Neurons (also called a linear threshold device or a threshold logic unit) can be modeled formally (mathematically) (Figure 8):

\[y(t+1) = \begin{cases} 1 & \text{if } \sum_i w_i x_i(t) \geq \theta \\ 0 & \text{otherwise} \end{cases} \]

Figure 8. A symbolic simplification of a neuron with a formal model of threshold.

The fundamental units of an artificial neural network

\[x_i \rightarrow \text{the inputs} \]
\[w_i \rightarrow \text{the weights (synaptic strengths)} \]
\[\theta \rightarrow \text{the threshold} \]
\[y \rightarrow \text{the output} \]

The new media technologies (the software patch and methodology) from this project will be applied and adapted to a series of future works, each unique because it is a responsive interactive system, a synergy of notated, performed music and sound and visual material generated from the performer’s gestures. The author’s chamber concerto for shakuhachi and

\[\text{Hyper-shaku} \]

\[\text{Sonic Kung Fu} \]

\[\text{Emergent Energies} \]

\[\text{Sonic Tai Chi} \]

\[\text{Sensor-Cow} \]

\[\text{Music from Without} \]

\[\text{Max/MSP software model, Figure 7} \]

\[\text{Cell body (soma)} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]

\[\text{Excitatory} \]

\[\text{Inhibitory} \]

\[\text{Output} \]

\[\text{Input} \]

\[\text{Soma} \]

\[\text{Dendrite} \]

\[\text{Axon} \]

\[\text{Synapse} \]

\[\text{Neuron} \]

\[\text{Threshold} \]
ensemble. The White Face of the Geisha, performed by Yoshikazu Iwamoto with Ensemble Recherche, Freiburg (2000) and Jeffrey Lependorf’s article, ‘Contemporary Notation for the Shakuhachi: A Primer for Composers’, in Perspectives of New Music [19] provide some background in idiomatic techniques, notation and articulations.

The physical nature of playing the shakuhachi makes it especially suitable for motion triggering since pitch inflection is achieved by angling the chin relative to the instrument and dramatic atari (articulation) attacks and head vibration are part of the ornamentation approach to pitch production, in addition to fingering and upper body movement typical of performing an instrument. Traditional live music-processing approaches analyze and synthesize real time musical response from the musical (audio) content of a performer. The approach of this project, in contrast, focuses on the gestural/spatial and theatrical nature of shakuhachi performance. The whole system is an "environment" - a hyper-shakuhachi, augmenting the sound scope from traditional sounds of the bamboo end-blown Japanese flute to include computer-generated music and visual images for a single-performer holistic presentation.

The reason for this project is multi-fold: to stimulate the interest in a traditional instrument; to augment its capability into the multidisciplinary, trans-medial realm of electronic music as well as physical, acoustic sound; to re-invigorate interest in traditional instruments amongst Japanese and other audiences with listening tendencies moving towards Western or technologically-enhanced listening. There is more interest in the traditional Japanese instrument in the U.S.A. and Australia (with its great cultural inheritance of shakuhachi players like Riley Lee, James Franklin, Andrew McGregor) than in Japan [8]. Hybridization with technologies and a new approach bringing its attention to a new and possibly younger audience potentially contributes to a new role for the instrument. In addition, traditional repertoire is extremely ancient and there is not very much contemporary repertory or performance context for this instrument, hence a multimedia environment positions it in a contemporary performance context.

This project will develop the method and a prototype piece. The method is transferable to other instruments (though specialized here for the shakuhachi) as well as further improvisation and composed performance pieces. The prototype will be developed with a notated shakuhachi part to demonstrate the development for the first performance exposure but the infrastructure will also contribute to subsequent creative work in the field of gesture-controlled hyper-instruments by the composer.

3 Wi-Fi protocol wireless sensor transmission, e.g. Emmanuel Flety’s WiSe Box

4. CONCLUSION

Hyper-shaku is a confluence of technologies, sonification and generative methods in a growing body of interactive work. This paper briefly outlines the transition of gestural technologies into the hyper-instrument environment that augments the acoustic instrument in both auditory and visual domains.

5. ACKNOWLEDGEMENTS

Thanks to the University of Sydney Sentient Lab (sensate lab), Key Centre of Design Computing and Cognition and to collaborators: Andrew Vande Moere, Joanne Jakovich and Amanda Scott; exhibitors, BetaSpace (Sydney Powerhouse Museum) and Sydney Esquisse. Beilharz’s research is supported by a University of Sydney Bridging Support Grant 2006. Jakovich is assisted by an Australian Postgraduate Award and Collaborative Research Centre for Construction Innovation Ph.D Scholarship.
6. REFERENCES

